Product Citations: 8

RhCMV Expands CCR5 Memory T Cells and promotes SIV reservoir genesis in the Gut Mucosa

Preprint on BioRxiv : the Preprint Server for Biology on 8 January 2025 by Perdios, C., Babu, N. S., et al.

Cytomegalovirus (CMV) is a prevalent β-herpesvirus that persists asymptomatically in immunocompetent hosts. In people with HIV-1 (PWH), CMV is associated with persistence of the HIV-1 reservoir and particular inflammatory related co-morbidities. The true causative role of CMV in HIV-associated pathologies remains unclear given that nearly all PWH are coinfected with CMV. In this study, we examined acute phase SIV dynamics in cohorts of rhesus macaques that were seropositive or -negative for rhesus CMV (RhCMV). We observed expansion of CCR5+ target CD4+ T cells in gut and lymph nodes (LN) that existed naturally in RhCMV-seropositive animals, the majority of which did not react to RhCMV lysate. These cells expressed high levels of the chemokine receptor CXCR3 and a ligand for this receptor, CXCL9, was systemically elevated in RhCMV-seropositive animals. RhCMV+ RMs also exhibited higher peak SIV viremia. CCR5 target memory CD4 T cells in the gut of RhCMV+ RMs were maintained during acute SIV and this was associated with greater seeding of SIV DNA in the intestine. Overall, our data suggests the ability of RhCMV to regulate chemotactic axes that direct lymphocyte trafficking and promote seeding of SIV in a diverse, polyclonal pool of memory CD4+ T cells.

  • Immunology and Microbiology

Alterations in peripheral T-cell and B-cell subsets in the ankylosing spondylitis patients with gut inflammation.

In International Journal of Rheumatic Diseases on 1 October 2024 by Luo, X., Li, J., et al.

This study investigates changes in immune cell subsets in peripheral blood of ankylosing spondylitis (AS) patients with colitis or terminal ileitis. It aims to explore the connection between changes in lymphocyte subsets and gut inflammation, providing insights for early detection.
Overall, 50 AS patients undergoing colonoscopy were enrolled. Flow cytometry was employed to analyze lymphocyte subsets, including T and B cells, in peripheral blood. Disease activity was assessed using CRP, ESR, BASDAI, ASDAS-CRP, and ASDAS-ESR.
Compared to AS patients without gut inflammation, those with colorectal inflammation showed a significant increase in total T cells (p < .05), an increase in exhausted CD4+ T cells (p < .05), and a decrease in Th2 cells and total Tc cells (p < .05). Notably, in AS patients with terminal ileitis, there was an increase in total B cells and classic switched B cells (p < .05), with a decrease in double-positive T cells (p < .05). However, no significant differences were observed in the distribution of Tfh-cell subpopulations (Tfh1, Tfh2, Tfh17) and Tc-cell subpopulations (Tc1, Tc2, Tc17) between AS patients with either colorectal inflammation or terminal ileitis (p > .05). We explored the relationship between disease activity scores, ESR, CRP, and lymphocyte subsets, but found no statistically significant correlation between them.
Distinct immune patterns may exist in AS with different types of intestinal inflammation. Colitis in AS is primarily characterized by a significant increase in exhausted CD4+ T cells, along with a decrease in Th2 cells. In contrast, terminal ileum inflammation in AS is marked by an increase in total B cells and classic switched B cells. These findings offer new insights for early detection and therapeutic intervention.
© 2024 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Non-human primate model of long-COVID identifies immune associates of hyperglycemia.

In Nature Communications on 20 August 2024 by Palmer, C. S., Perdios, C., et al.

Hyperglycemia, and exacerbation of pre-existing deficits in glucose metabolism, are manifestations of the post-acute sequelae of SARS-CoV-2. Our understanding of metabolic decline after acute COVID-19 remains unclear due to the lack of animal models. Here, we report a non-human primate model of metabolic post-acute sequelae of SARS-CoV-2 using SARS-CoV-2 infected African green monkeys. Using this model, we identify a dysregulated blood chemokine signature during acute COVID-19 that correlates with elevated and persistent hyperglycemia four months post-infection. Hyperglycemia also correlates with liver glycogen levels, but there is no evidence of substantial long-term SARS-CoV-2 replication in the liver and pancreas. Finally, we report a favorable glycemic effect of the SARS-CoV-2 mRNA vaccine, administered on day 4 post-infection. Together, these data suggest that the African green monkey model exhibits important similarities to humans and can be utilized to assess therapeutic candidates to combat COVID-related metabolic defects.
© 2024. The Author(s).

  • Immunology and Microbiology

Comprehensive Flow Cytometric, Immunohistologic, and Molecular Assessment of Thymus Function in Rhesus Macaques.

In ImmunoHorizons on 1 July 2024 by Hale, L. P., Macintyre, A. N., et al.

The critical importance of the thymus for generating new naive T cells that protect against novel infections and are tolerant to self-antigens has led to a recent revival of interest in monitoring thymic function in species other than humans and mice. Nonhuman primates such as rhesus macaques (Macaca mulatta) provide particularly useful animal models for translational research in immunology. In this study, we tested the performance of a 15-marker multicolor Ab panel for flow cytometric phenotyping of lymphocyte subsets directly from rhesus whole blood, with validation by thymectomy and T cell depletion. Immunohistochemical and multiplex RNA expression analysis of thymus tissue biopsies and molecular assays on PBMCs were used to further validate thymus function. Results identify Ab panels that can accurately classify rhesus naive T cells (CD3+CD45RA+CD197+ or CD3+CD28+CD95-) and recent thymic emigrants (CD8+CD28+CD95-CD103+CD197+) using just 100 µl of whole blood and commercially available fluorescent Abs. An immunohistochemical panel reactive with pan-cytokeratin (CK), CK14, CD3, Ki-67, CCL21, and TdT provides histologic evidence of thymopoiesis from formalin-fixed, paraffin-embedded thymus tissues. Identification of mRNAs characteristic of both functioning thymic epithelial cells and developing thymocytes and/or molecular detection of products of TCR gene rearrangement provide additional complementary methods to evaluate thymopoiesis, without requiring specific Abs. Combinations of multiparameter flow cytometry, immunohistochemistry, multiplex gene expression, and TCR excision circle assays can comprehensively evaluate thymus function in rhesus macaques while requiring only minimal amounts of peripheral blood or biopsied thymus tissue.
Copyright © 2024 The Authors.

Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma.

In Nature Communications on 8 September 2022 by Gyurdieva, A., Zajic, S., et al.

Autologous T cells transduced to express a high affinity T-cell receptor specific to NY-ESO-1 (letetresgene autoleucel, lete-cel) show promise in the treatment of metastatic synovial sarcoma, with 50% overall response rate. The efficacy of lete-cel treatment in 45 synovial sarcoma patients (NCT01343043) has been previously reported, however, biomarkers predictive of response and resistance remain to be better defined. This post-hoc analysis identifies associations of response to lete-cel with lymphodepleting chemotherapy regimen (LDR), product attributes, cell expansion, cytokines, and tumor gene expression. Responders have higher IL-15 levels pre-infusion (p = 0.011) and receive a higher number of transduced effector memory (CD45RA- CCR7-) CD8 + cells per kg (p = 0.039). Post-infusion, responders have increased IFNγ, IL-6, and peak cell expansion (p < 0.01, p < 0.01, and p = 0.016, respectively). Analysis of tumor samples post-treatment illustrates lete-cel infiltration and a decrease in expression of macrophage genes, suggesting remodeling of the tumor microenvironment. Here we report potential predictive and pharmacodynamic markers of lete-cel response that may inform LDR, cell dose, and strategies to enhance anticancer efficacy.
© 2022. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

  • FC/FACS
  • Immunology and Microbiology
View this product on CiteAb