Product Citations: 6

Synergistic Effects of PARP Inhibition and Cholesterol Biosynthesis Pathway Modulation.

In Cancer Res Commun on 1 September 2024 by Rutkowska, A., Eberl, H. C., et al.

An in-depth multiomic molecular characterization of PARP inhibitors revealed a distinct poly-pharmacology of niraparib (Zejula) mediated by its interaction with lanosterol synthase (LSS), which is not observed with other PARP inhibitors. Niraparib, in a similar way to the LSS inhibitor Ro-48-8071, induced activation of the 24,25-epoxysterol shunt pathway, which is a regulatory signaling branch of the cholesterol biosynthesis pathway. Interestingly, the combination of an LSS inhibitor with a PARP inhibitor that does not bind to LSS, such as olaparib, had an additive effect on killing cancer cells to levels comparable with niraparib as a single agent. In addition, the combination of PARP inhibitors and statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, an enzyme catalyzing the rate-limiting step in the mevalonate pathway, had a synergistic effect on tumor cell killing in cell lines and patient-derived ovarian tumor organoids. These observations suggest that concomitant inhibition of the cholesterol biosynthesis pathway and PARP activity might result in stronger efficacy of these inhibitors against tumor types highly dependent on cholesterol metabolism.
The presented data indicate, to our knowledge, for the first time, the potential benefit of concomitant modulation of cholesterol biosynthesis pathway and PARP inhibition and highlight the need for further investigation to assess its translational relevance.
©2024 The Authors; Published by the American Association for Cancer Research.

Cervical mucosal inflammation expands functional polymorphonuclear myeloid-derived suppressor cells

Preprint on MedRxiv : the Preprint Server for Health Sciences on 10 July 2024 by Pieren, D. K., Benítez-Martínez, A., et al.

The mucosal immune system plays a fundamental role in maintaining microbial balance. Microbial imbalance in the female genital tract increases the risk for adverse health outcomes in women and may increase susceptibility to genital tract infections. Among different relevant immune subsets, myeloid-derived suppressor cells (MDSCs) remain understudied in the context of female genital tract conditions. Here we show that frequency of polymorphonuclear (PMN-) MDSCs increased in the cervical mucosa of women with Chlamydia trachomatis , bacterial vaginosis, or with a coinfection, but not in women with human papillomavirus. Mucosal PMN-MDSC frequencies correlated with mucosal IL-1β in C. trachomatis patients and ex vivo exposure of cervical tissue to C. trachomatis elevated both PMN-MDSC frequencies and IL-1β secretion. Likewise, exposure of cervical tissue to cervicovaginal lavage fluid from C. trachomatis and bacterial vaginosis patients also enhanced PMN-MDSC frequencies. Lastly, cervical MDSCs expressed suppressive mediators and functionally suppressed cytotoxic T-cell responses. Our study identifies IL-1β-stimulated PMN-MDSCs as an immune suppressive mediator in female genital tract infections, potentially contributing to susceptibility to acquiring secondary infections at this site.

  • FC/FACS
  • Immunology and Microbiology

ZNF384 Fusion Oncoproteins Drive Lineage Aberrancy in Acute Leukemia.

In Blood Cancer Discovery on 5 May 2022 by Dickerson, K. M., Qu, C., et al.

ZNF384-rearranged fusion oncoproteins (FO) define a subset of lineage ambiguous leukemias, but their mechanistic role in leukemogenesis and lineage ambiguity is poorly understood. Using viral expression in mouse and human hematopoietic stem and progenitor cells (HSPC) and a Ep300::Znf384 knockin mouse model, we show that ZNF384 FO promote hematopoietic expansion, myeloid lineage skewing, and self-renewal. In mouse HSPCs, concomitant lesions, such as NRASG12D, were required for fully penetrant leukemia, whereas in human HSPCs, expression of ZNF384 FO drove B/myeloid leukemia, with sensitivity of a ZNF384-rearranged xenograft to FLT3 inhibition in vivo. Mechanistically, ZNF384 FO occupy a subset of predominantly intragenic/enhancer regions with increased histone 3 lysine acetylation and deregulate expression of hematopoietic stem cell transcription factors. These data define a paradigm for FO-driven lineage ambiguous leukemia, in which expression in HSPCs results in deregulation of lineage-specific genes and hematopoietic skewing, progressing to full leukemia in the context of proliferative stress.
Expression of ZNF384 FO early in hematopoiesis results in binding and deregulation of key hematopoietic regulators, skewing of hematopoiesis, and priming for leukemic transformation. These results reveal the interplay between cell of origin and expression of ZNF384 FO to mediate lineage ambiguity and leukemia development. This article is highlighted in the In This Issue feature, p. 171.
©2022 American Association for Cancer Research.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research

Microcephaly Modeling of Kinetochore Mutation Reveals a Brain-Specific Phenotype.

In Cell Reports on 9 October 2018 by Omer Javed, A., Li, Y., et al.

Most genes mutated in microcephaly patients are expressed ubiquitously, and yet the brain is the only major organ compromised in most patients. Why the phenotype remains brain specific is poorly understood. In this study, we used in vitro differentiation of human embryonic stem cells to monitor the effect of a point mutation in kinetochore null protein 1 (KNL1; CASC5), identified in microcephaly patients, during in vitro brain development. We found that neural progenitors bearing a patient mutation showed reduced KNL1 levels, aneuploidy, and an abrogated spindle assembly checkpoint. By contrast, no reduction of KNL1 levels or abnormalities was observed in fibroblasts and neural crest cells. We established that the KNL1 patient mutation generates an exonic splicing silencer site, which mainly affects neural progenitors because of their higher levels of splicing proteins. Our results provide insight into the brain-specific phenomenon, consistent with microcephaly being the only major phenotype of patients bearing KNL1 mutation.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

Notch Signaling Facilitates In Vitro Generation of Cross-Presenting Classical Dendritic Cells.

In Cell Reports on 19 June 2018 by Kirkling, M. E., Cytlak, U., et al.

The IRF8-dependent subset of classical dendritic cells (cDCs), termed cDC1, is important for cross-priming cytotoxic T cell responses against pathogens and tumors. Culture of hematopoietic progenitors with DC growth factor FLT3 ligand (FLT3L) yields very few cDC1s (in humans) or only immature "cDC1-like" cells (in the mouse). We report that OP9 stromal cells expressing the Notch ligand Delta-like 1 (OP9-DL1) optimize FLT3L-driven development of cDC1s from murine immortalized progenitors and primary bone marrow cells. Co-culture with OP9-DL1 induced IRF8-dependent cDC1s with a phenotype (CD103+ Dec205+ CD8α+) and expression profile resembling primary splenic cDC1s. OP9-DL1-induced cDC1s showed preferential migration toward CCR7 ligands in vitro and superior T cell cross-priming and antitumor vaccination in vivo. Co-culture with OP9-DL1 also greatly increased the yield of IRF8-dependent CD141+ cDC1s from human bone marrow progenitors cultured with FLT3L. Thus, Notch signaling optimizes cDC generation in vitro and yields authentic cDC1s for functional studies and translational applications.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology
View this product on CiteAb