Product Citations: 9

Haploinsufficiency in PTPN2 leads to early-onset systemic autoimmunity from Evans syndrome to lupus.

In The Journal of Experimental Medicine on 2 September 2024 by Jeanpierre, M., Cognard, J., et al.

An exome sequencing strategy employed to identify pathogenic variants in patients with pediatric-onset systemic lupus or Evans syndrome resulted in the discovery of six novel monoallelic mutations in PTPN2. PTPN2 is a phosphatase that acts as an essential negative regulator of the JAK/STAT pathways. All mutations led to a loss of PTPN2 regulatory function as evidenced by in vitro assays and by hyperproliferation of patients' T cells. Furthermore, patients exhibited high serum levels of inflammatory cytokines, mimicking the profile observed in individuals with gain-of-function mutations in STAT factors. Flow cytometry analysis of patients' blood cells revealed typical alterations associated with autoimmunity and all patients presented with autoantibodies. These findings further supported the notion that a loss of function in negative regulators of cytokine pathways can lead to a broad spectrum of autoimmune manifestations and that PTPN2 along with SOCS1 haploinsufficiency constitute a new group of monogenic autoimmune diseases that can benefit from targeted therapy.
© 2024 Jeanpierre et al.

  • Immunology and Microbiology

Intrinsic RIG-I restrains STAT5 activation to modulate antitumor activity of CD8+ T cells.

In The Journal of Clinical Investigation on 1 May 2023 by Jiang, X., Lin, J., et al.

Antitumor activity of CD8+ T cells is potentially restrained by a variety of negative regulatory pathways that are triggered in the tumor microenvironment, yet, the exact mechanisms remain incompletely defined. Here, we report that intrinsic RIG-I in CD8+ T cells represents such a factor, as evidenced by observations that the tumor-restricting effect of endogenous or adoptively transferred CD8+ T cells was enhanced by intrinsic Rig-I deficiency or inhibition, with the increased accumulation, survival, and cytotoxicity of tumor-infiltrating CD8+ T cells. Mechanistically, T cell activation-induced RIG-I upregulation restrained STAT5 activation via competitive sequestering of HSP90. In accordance with this, the frequency of RIG-I+ tumor-infiltrating CD8+ T cells in human colon cancer positively correlated with attenuated survival and effector signatures of CD8+ T cells as well as poor prognosis. Collectively, these results implicate RIG-I as a potentially druggable factor for improving CD8+ T cell-based tumor immunotherapy.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Lymph node colonization induces tumor-immune tolerance to promote distant metastasis.

In Cell on 26 May 2022 by Reticker-Flynn, N. E., Zhang, W., et al.

For many solid malignancies, lymph node (LN) involvement represents a harbinger of distant metastatic disease and, therefore, an important prognostic factor. Beyond its utility as a biomarker, whether and how LN metastasis plays an active role in shaping distant metastasis remains an open question. Here, we develop a syngeneic melanoma mouse model of LN metastasis to investigate how tumors spread to LNs and whether LN colonization influences metastasis to distant tissues. We show that an epigenetically instilled tumor-intrinsic interferon response program confers enhanced LN metastatic potential by enabling the evasion of NK cells and promoting LN colonization. LN metastases resist T cell-mediated cytotoxicity, induce antigen-specific regulatory T cells, and generate tumor-specific immune tolerance that subsequently facilitates distant tumor colonization. These effects extend to human cancers and other murine cancer models, implicating a conserved systemic mechanism by which malignancies spread to distant organs.
Copyright © 2022 Elsevier Inc. All rights reserved.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Deficiency of adenosine deaminase type 2 (DADA2) is an autosomal recessive disease caused by bi-allelic loss-of-function mutations in ADA2. Treatment with anti-TNF is effective for the autoinflammatory and vasculitic components of the disease but does not correct marrow failure or immunodeficiency; and anti-drug antibodies cause loss of efficacy over time. Allogeneic haematopoietic stem cell transplantation may be curative, but graft versus host disease remains a significant concern. Autologous gene therapy would therefore be an attractive longer-term therapeutic option. We investigated whether lentiviral vector (LV)-mediated ADA2 gene correction could rescue the immunophenotype of DADA2 in primary immune cells derived from patients and in cell line models. Lentiviral transduction led to: i) restoration of ADA2 protein expression and enzymatic activity; (ii) amelioration of M1 macrophage cytokine production, IFN-γ and phosphorylated STAT1 expression in patient-derived macrophages; and (iii) amelioration of macrophage-mediated endothelial activation that drives the vasculitis of DADA2. We also successfully transduced human CD34+ haematopoietic stem progenitor cells (HSPC) derived from a DADA2 patient with pure red cell aplasia and observed restoration of ADA2 expression and enzymatic activity in CD34+HSPC, alongside recovery of stem-cell proliferative and colony forming unit capacity. These preclinical data now expand the evidence for the efficacy of gene transfer strategies in DADA2, and strongly support clinical translation of a lentivirus-mediated gene therapy approach to treat DADA2.
Copyright © 2022 Hong, Casimir, Houghton, Zhang, Jensen, Omoyinmi, Torrance, Papadopoulou, Cummins, Roderick, Thrasher, Brogan and Eleftheriou.

  • FC/FACS
  • Homo sapiens (Human)
  • Genetics
  • Immunology and Microbiology

JAK2-STAT Epigenetically Regulates Tolerized Genes in Monocytes in the First Encounter With Gram-Negative Bacterial Endotoxins in Sepsis.

In Frontiers in Immunology on 7 December 2021 by Morante-Palacios, O., Lorente-Sorolla, C., et al.

Microbial challenges, such as widespread bacterial infection in sepsis, induce endotoxin tolerance, a state of hyporesponsiveness to subsequent infections. The participation of DNA methylation in this process is poorly known. In this study, we perform integrated analysis of DNA methylation and transcriptional changes following in vitro exposure to gram-negative bacterial lipopolysaccharide, together with analysis of ex vivo monocytes from septic patients. We identify TET2-mediated demethylation and transcriptional activation of inflammation-related genes that is specific to toll-like receptor stimulation. Changes also involve phosphorylation of STAT1, STAT3 and STAT5, elements of the JAK2 pathway. JAK2 pathway inhibition impairs the activation of tolerized genes on the first encounter with lipopolysaccharide. We then confirm the implication of the JAK2-STAT pathway in the aberrant DNA methylome of patients with sepsis caused by gram-negative bacteria. Finally, JAK2 inhibition in monocytes partially recapitulates the expression changes produced in the immunosuppressive cellular state acquired by monocytes from gram-negative sepsis, as described by single cell-RNA-sequencing. Our study evidences both the crucial role the JAK2-STAT pathway in epigenetic regulation and initial response of the tolerized genes to gram-negative bacterial endotoxins and provides a pharmacological target to prevent exacerbated responses.
Copyright © 2021 Morante-Palacios, Lorente-Sorolla, Ciudad, Calafell-Segura, Garcia-Gomez, Català-Moll, Ruiz-Sanmartín, Martínez-Gallo, Ferrer, Ruiz-Rodriguez, Álvarez-Errico and Ballestar.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology
View this product on CiteAb