Product Citations: 3

Innate lymphoid cells (ILCs) are plastic immune cells divided into 3 main subsets, characterized by distinct phenotypic and functional profiles. Using single cell approaches, heightened heterogeneity of mouse ILCs has been appreciated, imprinted by tissue signals that shape their transcriptome and epigenome. Intra-subset diversity has also been observed in human ILCs. However, combined transcriptomic and epigenetic analyses of single ILCs in humans are lacking. Here, we show high transcriptional and epigenetic heterogeneity among human circulating ILCs in healthy individuals. We describe phenotypically distinct subclusters and diverse chromatin accessibility within main ILC populations, compatible with differentially poised states. We validate the use of this healthy donor-based analysis as resource dataset to help inferring ILC changes occurring in disease conditions. Overall, our work provides insights in the complex human ILC biology. We anticipate it to facilitate hypothesis-driven studies in patients, without the need to perform single cell OMICs using precious patients' material.
© 2023 The Author(s).

  • Cardiovascular biology

We previously reported that synovial mast cells (MCs) from patients with rheumatoid arthritis (RA) produced TNF-α in response to immune complexes via FcγRI and FcγRIIA. However, the specific functions of synovial MCs in RA remain unclear. This study aimed to elucidate those functions. Synovial tissues and fluid were obtained from RA and osteoarthritis (OA) patients undergoing joint replacement surgery. Synovium-derived, cultured MCs were generated by culturing dispersed synovial cells with stem cell factor. We performed microarray-based screening of mRNA and microRNA (miRNA), followed by quantitative RT-PCR-based verification. Synovial MCs from RA patients showed significantly higher prostaglandin systhetase (PTGS)1 and PTGS2 expression compared with OA patients' MCs, and they produced significantly more prostaglandin D2 (PGD2) following aggregation of FcγRI. PGD2 induced IL-8 production by human group 2 innate lymphoid cells, suggesting that PGD2-producing MCs induce neutrophil recruitment into the synovium of RA patients. PTGS2 mRNA expression in RA patients' MCs correlated inversely with miRNA-199a-3p expression, which down-regulated PTGS2. RA patients' synovial fluid contained significantly more PGD2 compared with OA patients' fluid. Synovial MCs might regulate inflammation in RA through hyper-production of PGD2 following FcRγ aggregation. Our findings indicate functional heterogeneity of human MCs among diseases.

Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis.

In Nature Communications on 19 September 2017 by Trabanelli, S., Chevalier, M. F., et al.

Group 2 innate lymphoid cells (ILC2s) are involved in human diseases, such as allergy, atopic dermatitis and nasal polyposis, but their function in human cancer remains unclear. Here we show that, in acute promyelocytic leukaemia (APL), ILC2s are increased and hyper-activated through the interaction of CRTH2 and NKp30 with elevated tumour-derived PGD2 and B7H6, respectively. ILC2s, in turn, activate monocytic myeloid-derived suppressor cells (M-MDSCs) via IL-13 secretion. Upon treating APL with all-trans retinoic acid and achieving complete remission, the levels of PGD2, NKp30, ILC2s, IL-13 and M-MDSCs are restored. Similarly, disruption of this tumour immunosuppressive axis by specifically blocking PGD2, IL-13 and NKp30 partially restores ILC2 and M-MDSC levels and results in increased survival. Thus, using APL as a model, we uncover a tolerogenic pathway that may represent a relevant immunosuppressive, therapeutic targetable, mechanism operating in various human tumour types, as supported by our observations in prostate cancer.Group 2 innate lymphoid cells (ILC2s) modulate inflammatory and allergic responses, but their function in cancer immunity is still unclear. Here the authors show that, in acute promyelocytic leukaemia, tumour-activated ILC2s secrete IL-13 to induce myeloid-derived suppressor cells and support tumour growth.

  • Cancer Research
View this product on CiteAb