Product Citations: 4

Human CD34+-derived plasmacytoid dendritic cells as surrogates for primary pDCs and potential cancer immunotherapy.

In Frontiers in Immunology on 22 November 2024 by Fiore, G., Weckwarth, W., et al.

Plasmacytoid dendritic cells (pDCs) are capable of triggering broad immune responses, yet, their scarcity in blood coupled to their reduced functionality in cancer, makes their therapeutic use for in situ activation or vaccination challenging.
We designed an in vitro differentiation protocol tailored for human pDCs from cord blood (CB) hematopoietic stem cells (HSCs) with StemRegenin 1 (SR-1) and GM-CSF supplementation. Next, we evaluated the identity and function of CB-pDCs compared to human primary pDCs. Furthermore, we tested the potential of CB-pDCs to support anti-tumor immune responses in co-culture with tumor explants from CRC patients.
Here, we report an in vitro differentiation protocol enabling the generation of 200 pDCs per HSC and highlight the role of GM-CSF and SR-1 in CB-pDC differentiation and function. CB-pDCs exhibited a robust resemblance to primary pDCs phenotypically and functionally. Transcriptomic analysis confirmed strong homology at both, baseline and upon TLR9 or TLR7 stimulation. Further, we could confirm the potential of CB-pDCs to promote inflammation in the tumor microenvironment by eliciting cytokines associated with NK and T cell recruitment and function upon TLR7 stimulation ex vivo in patient tumor explants.
This study highlights CB-pDCs as surrogates for primary pDCs to investigate their biology and for their potential use as cell therapy in cancer.
Copyright © 2024 Fiore, Weckwarth, Paetzold, Albertí Servera, Gies, Rosenhauer, Antoniolli, Nassiri, Schmeing, Dettling, Soni, Majety, Krug, Hoves and Wolf.

  • Cancer Research
  • Immunology and Microbiology

Reduced monocyte proportions and responsiveness in convalescent COVID-19 patients.

In Frontiers in Immunology on 22 January 2024 by Ravkov, E. V., Williams, E. S. C. P., et al.

The clinical manifestations of acute severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) suggest a dysregulation of the host immune response that leads to inflammation, thrombosis, and organ dysfunction. It is less clear whether these dysregulated processes persist during the convalescent phase of disease or during long COVID. We sought to examine the effects of SARS-CoV-2 infection on the proportions of classical, intermediate, and nonclassical monocytes, their activation status, and their functional properties in convalescent COVID-19 patients.
Peripheral blood mononuclear cells (PBMCs) from convalescent COVID-19 patients and uninfected controls were analyzed by multiparameter flow cytometry to determine relative percentages of total monocytes and monocyte subsets. The expression of activation markers and proinflammatory cytokines in response to LPS treatment were measured by flow cytometry and ELISA, respectively.
We found that the percentage of total monocytes was decreased in convalescent COVID-19 patients compared to uninfected controls. This was due to decreased intermediate and non-classical monocytes. Classical monocytes from convalescent COVID-19 patients demonstrated a decrease in activation markers, such as CD56, in response to stimulation with bacterial lipopolysaccharide (LPS). In addition, classical monocytes from convalescent COVID-19 patients showed decreased expression of CD142 (tissue factor), which can initiate the extrinsic coagulation cascade, in response to LPS stimulation. Finally, we found that monocytes from convalescent COVID-19 patients produced less TNF-α and IL-6 in response to LPS stimulation, than those from uninfected controls.
SARS-CoV-2 infection exhibits a clear effect on the relative proportions of monocyte subsets, the activation status of classical monocytes, and proinflammatory cytokine production that persists during the convalescent phase of disease.
Copyright © 2024 Ravkov, Williams, Elgort, Barker, Planelles, Spivak, Delgado, Lin and Hanley.

  • FC/FACS
  • COVID-19
  • Immunology and Microbiology

Developing Covalent Protein Drugs via Proximity-Enabled Reactive Therapeutics.

In Cell on 9 July 2020 by Li, Q., Chen, Q., et al.

Small molecule covalent drugs provide desirable therapeutic properties over noncovalent ones for treating challenging diseases. The potential of covalent protein drugs, however, remains unexplored due to protein's inability to bind targets covalently. We report a proximity-enabled reactive therapeutics (PERx) approach to generate covalent protein drugs. Through genetic code expansion, a latent bioreactive amino acid fluorosulfate-L-tyrosine (FSY) was incorporated into human programmed cell death protein-1 (PD-1). Only when PD-1 interacts with PD-L1 did the FSY react with a proximal histidine of PD-L1 selectively, enabling irreversible binding of PD-1 to only PD-L1 in vitro and in vivo. When administrated in immune-humanized mice, the covalent PD-1(FSY) exhibited strikingly more potent antitumor effect over the noncovalent wild-type PD-1, attaining therapeutic efficacy equivalent or superior to anti-PD-L1 antibody. PERx should provide a general platform technology for converting various interacting proteins into covalent binders, achieving specific covalent protein targeting for biological studies and therapeutic capability unattainable with conventional noncovalent protein drugs.
Copyright © 2020 Elsevier Inc. All rights reserved.

Inflammation has been involved in the pathophysiology and treatment response of major depressive disorder (MDD). Plasma cytokine profiles of 171 treatment-naive MDD patients (none of the MDD patients received an adequate trial of antidepressants or evidence-based psychotherapy) and 64 healthy controls (HCs) were obtained. MDD patients exhibited elevated concentrations of 18 anti- and proinflammatory markers and decreased concentrations of 6 cytokines. Increased inflammasome protein expression was observed in MDD patients, indicative of an activated inflammatory response. The plasma of MDD patients was immunosuppressive on healthy donor peripheral blood mononuclear cells, inducing reduced activation of monocytes/dendritic cells and B cells and reduced T cell memory. Comparison between 33 non-responders and 71 responders at baseline and 12 weeks revealed that after treatment, anti-inflammatory cytokine levels increase in both groups, whereas 5 proinflammatory cytokine levels were stabilized in responders, but continued to increase in non-responders. MDD patients exhibit remodeling of their inflammatory landscape.
Copyright © 2018 Elsevier Inc. All rights reserved.

  • Homo sapiens (Human)
  • Immunology and Microbiology
  • Neuroscience
View this product on CiteAb