Product Citations: 7

The immune system has emerged as an important target of thyroid hormones (THs); however, the role of TH in T cells has so far remained elusive. In this study, we assessed the effect of TH receptor α (TRα) signaling on activation and function of T cells. Our findings show that lack of canonical TRα action not only increased the frequency of regulatory T cells (Treg) but propelled an activated and migratory Treg phenotype and nuclear factor κB (NF-κB) activation in Treg. Conversely, canonical TRα action reduced activation of the NF-κB pathway previously shown to play a pivotal role in Treg differentiation and function. Taken together, our findings demonstrate that TRα impacts T cell differentiation and phenotype. Given the well-known interaction of inflammation, immune responses, and TH axis in e.g., severe illness, altered TH-TRα signaling may have an important role in regulating T cell responses during disease.
© 2024 The Author(s).

  • Mus musculus (House mouse)
  • Endocrinology and Physiology
  • Immunology and Microbiology

Activation of the aryl hydrocarbon receptor inhibits neuropilin-1 upregulation on IL-2-responding CD4+ T cells.

In Frontiers in Immunology on 30 November 2023 by Sandoval, S., Malany, K., et al.

Neuropilin-1 (Nrp1), a transmembrane protein expressed on CD4+ T cells, is mostly studied in the context of regulatory T cell (Treg) function. More recently, there is increasing evidence that Nrp1 is also highly expressed on activated effector T cells and that increases in these Nrp1-expressing CD4+ T cells correspond with immunopathology across several T cell-dependent disease models. Thus, Nrp1 may be implicated in the identification and function of immunopathologic T cells. Nrp1 downregulation in CD4+ T cells is one of the strongest transcriptional changes in response to immunoregulatory compounds that act though the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor. To better understand the link between AhR and Nrp1 expression on CD4+ T cells, Nrp1 expression was assessed in vivo and in vitro following AhR ligand treatment. In the current study, we identified that the percentage of Nrp1 expressing CD4+ T cells increases over the course of activation and proliferation in vivo. The actively dividing Nrp1+Foxp3- cells express the classic effector phenotype of CD44hiCD45RBlo, and the increase in Nrp1+Foxp3- cells is prevented by AhR activation. In contrast, Nrp1 expression is not modulated by AhR activation in non-proliferating CD4+ T cells. The downregulation of Nrp1 on CD4+ T cells was recapitulated in vitro in cells isolated from C57BL/6 and NOD (non-obese diabetic) mice. CD4+Foxp3- cells expressing CD25, stimulated with IL-2, or differentiated into Th1 cells, were particularly sensitive to AhR-mediated inhibition of Nrp1 upregulation. IL-2 was necessary for AhR-dependent downregulation of Nrp1 expression both in vitro and in vivo. Collectively, the data demonstrate that Nrp1 is a CD4+ T cell activation marker and that regulation of Nrp1 could be a previously undescribed mechanism by which AhR ligands modulate effector CD4+ T cell responses.
Copyright © 2023 Sandoval, Malany, Thongphanh, Martinez, Goodson, Souza, Lin, Sweeney, Pennington, Lein, Kerkvliet and Ehrlich.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Despite the capability of extracellular vesicles (EVs) derived from Gram-negative and Gram-positive bacteria to induce potent anti-tumour responses, large-scale production of bacterial EVs remains as a hurdle for their development as novel cancer immunotherapeutic agents. Here, we developed manufacturing processes for mass production of Escherichia coli EVs, namely, outer membrane vesicles (OMVs). By combining metal precipitation and size-exclusion chromatography, we isolated 357 mg in total protein amount of E. coli OMVs, which was equivalent to 3.93 × 1015 particles (1.10 × 1010 particles/μg in total protein amounts of OMVs) from 160 L of the conditioned medium. We show that these mass-produced E. coli OMVs led to complete remission of two mouse syngeneic tumour models. Further analysis of tumour microenvironment in neoantigen-expressing tumour models revealed that E. coli OMV treatment causes increased infiltration and activation of CD8+ T cells, especially those of cancer antigen-specific CD8+ T cells with high expression of TCF-1 and PD-1. Furthermore, E. coli OMVs showed synergistic anti-tumour activity with anti-PD-1 antibody immunotherapy, inducing substantial tumour growth inhibition and infiltration of activated cancer antigen-specific stem-like CD8+ T cells into the tumour microenvironment. These data highlight the potent anti-tumour activities of mass-produced E. coli OMVs as a novel candidate for developing next-generation cancer immunotherapeutic agents.
© 2023 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

E-cadherin in developing murine T cells controls spindle alignment and differentiation during β-selection

Preprint on BioRxiv : the Preprint Server for Biology on 15 June 2022 by Charnley, M., Allam, A. H., et al.

A critical stage of T cell development is β-selection; at this stage the TCRβ chain is generated and the developing T cell starts to acquire antigenic specificity. Progression through β-selection is assisted by a low affinity interaction between the nascent TCRβ chain and peptide presented on stromal MHC and external cues provided by the niche, including Notch and CXCR4. In this study, we reveal the importance of a new cue within the murine developing T cell niche which is critical for T cell development. E-cadherin mediates cell-cell interactions and influences cell fate in many developmental systems. In developing T cells E-cadherin contributed to the formation of an immunological synapse and the alignment of the mitotic spindle with the polarity axis during division, which facilitated subsequent T cell development. Collectively, these data highlight a new aspect of the developing T cell niche and provide insights into the role of E-cadherin in the β-selection stage of T cell development.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Inflammatory bowel disease (IBD) is a chronic autoimmune disease associated with various risk factors. Pycnoporus sanguineus (L.) Murrill is a saprotrophic fungus used worldwide for its industrial and medical purposes. Here, polysaccharide from P. sanguineus (PPS) was explored for its antiinflammatory potential in a murine colitis model of IBD induced by dextran sulfate sodium (DSS). PPS ameliorated the colitis as manifested by the lowered disease activity index (DAI), prolonged colon, and reduced serum lipopolysaccharide (LPS). PPS recovered the histological lesion by upregulating the expressions of Zonula occludens-1 (ZO-1), E-cadherin, and proliferating cell nuclear antigen (PCNA). PPS inhibited the helper T cells (Th)-mediated immune response by decreasing the proportions of Th cells (including Th2 cells, Th17 cells, and regulatory T cells), which was accompanied with reductions on myeloperoxidase (MPO) activity and releases of several interleukins and chemokines within the colon. Moreover, PPS exhibited an evident inhibition on autophagy, in which the ratio of light chain 3 (LC3) II/I was declined, while the expression of p62 and Beclin-1 was increased. The present study highlighted important clinical implications for the treatment application of PPS against IBD, which relies on the regulation of Th cells repertoire and autophagy suppression to restore epithelium barrier.
© 2020 John Wiley & Sons, Ltd.

  • Cell Biology
  • Immunology and Microbiology
View this product on CiteAb