Product Citations: 20

Cytotoxic NK Cells Impede Response to Checkpoint Immunotherapy in Melanoma with an Immune-Excluded Phenotype.

In Cancer Discovery on 4 September 2025 by Pozniak, J., Roda, N., et al.

Immune checkpoint blockade (ICB) has revolutionized cancer treatment. Unfortunately, the inability of lymphocytes to infiltrate the tumor nest, a phenomenon known as immune exclusion, drastically limits ICB responsiveness. Analyzing the immune landscape of matched pre- and early on-treatment biopsies of patients with melanoma undergoing ICB therapy, we observed a significant increase in cytotoxic NK cells in early on-treatment biopsies from nonresponders. Spatial multiomic analyses revealed that, although NK cells colocalized with CD8+ T cells within the tumor bed in responding lesions, they were excluded from the tumor parenchyma in nonresponding lesions. Strikingly, pharmacologic depletion of NK cells in a unique melanoma mouse model exhibiting an immune-excluded phenotype unleashed immune infiltration of the tumor core and tumor clearance upon ICB exposure. Mechanistically, we show that NK cells are actively recruited to immune-excluded areas upon ICB exposure via the chemokine receptor CX3CR1 to suppress tumor infiltration and antitumor function of CD8+ T cells.
Immune exclusion is responsible for intrinsic resistance to ICB in about half of nonresponder patients. Our unexpected observation that targeting NK cell biology unleashes the recruitment and antitumor activity of CD8+ T cells in tumors with an immune-excluded phenotype offers a potential therapeutic avenue for this large patient population. See related commentary by Galvez-Cancino et al., p. 1777 See related article by Song et al., p. 1835.
©2025 The Authors; Published by the American Association for Cancer Research.

  • Cancer Research
  • Immunology and Microbiology

Dynamic fibroblast-immune interactions shape recovery after brain injury.

In Nature on 3 September 2025 by Ewing-Crystal, N. A., Mroz, N. M., et al.

Fibroblasts and immune cells coordinate tissue regeneration and necessary scarring after injury. In the brain, fibroblasts are border-enriched cells whose dynamic molecular states and immune interactions after injury remain unclear1. Here we define the shared fibroblast-immune response to brain injury. Early profibrotic myofibroblasts develop from pre-existing brain fibroblasts and infiltrate brain lesions, orchestrated by fibroblast TGFβ signalling, profibrotic macrophages and microglia, and perilesional glia. Myofibroblasts transition into several late fibroblast states, including lymphocyte-interactive fibroblasts. Interruption of the early myofibroblast state exacerbated sub-acute brain injury, tissue loss and secondary neuroinflammation, with increased mortality in the transient middle cerebral artery occlusion stroke model. Disruption of late lymphocyte-fibroblast niches via selective loss of fibroblast chemokine CXCL12 led to late brain-specific innate inflammation and lymphocyte dispersal with increased IFNγ production. These data indicate the response to brain injury is coordinated by evolving temporal and spatial fibroblast states that limit functional tissue loss and chronic neuroinflammation.
© 2025. The Author(s).

  • Immunology and Microbiology

Mutations that negatively impact mitochondrial function are highly prevalent in humans and lead to disorders with a wide spectrum of disease phenotypes, including deficiencies in immune cell development and/or function. Previous analyses of mice with a hepatocyte-specific cytochrome c oxidase (COX) deficiency revealed an unexpected peripheral blood leukopenia associated with splenic and thymic atrophy. Here, we use mice with a hepatocyte-specific deletion of the COX assembly factor Sco1 to show that metabolic defects extrinsic to the hematopoietic compartment lead to a pan-lymphopenia represented by severe losses in both B and T cells. We further demonstrate that immune defects in these mice are associated with the loss of bone marrow lymphoid progenitors common to both lineages and early signs of autoantibody-mediated autoimmunity. Our findings collectively identify hepatocyte dysfunction as a potential instigator of immunodeficiency in patients with congenital mitochondrial defects who suffer from chronic or recurrent infections.
© 2025 The Author(s).

Skin autonomous antibody production regulates host-microbiota interactions.

In Nature on 1 February 2025 by Gribonika, I., Band, V. I., et al.

The microbiota colonizes each barrier site and broadly controls host physiology1. However, when uncontrolled, microbial colonists can also promote inflammation and induce systemic infection2. The unique strategies used at each barrier tissue to control the coexistence of the host with its microbiota remain largely elusive. Here we uncover that, in the skin, host-microbiota symbiosis depends on the ability of the skin to act as an autonomous lymphoid organ. Notably, an encounter with a new skin commensal promotes two parallel responses, both under the control of Langerhans cells. On one hand, skin commensals induce the formation of classical germinal centres in the lymph node associated with immunoglobulin G1 (IgG1) and IgG3 antibody responses. On the other hand, microbial colonization also leads to the development of tertiary lymphoid organs in the skin that can locally sustain IgG2b and IgG2c responses. These phenomena are supported by the ability of regulatory T cells to convert into T follicular helper cells. Skin autonomous production of antibodies is sufficient to control local microbial biomass, as well as subsequent systemic infection with the same microorganism. Collectively, these results reveal a compartmentalization of humoral responses to the microbiota allowing for control of both microbial symbiosis and potential pathogenesis.
© 2024. The Author(s).

The emerging fungal pathogenCandida aurisinduces IFNγ to colonize mammalian hair follicles

Preprint on BioRxiv : the Preprint Server for Biology on 18 January 2025 by Merrill, E. D., Prudent, V., et al.

Public health alarm concerning the emerging fungus Candida auris is fueled by its antifungal drug resistance and propensity to cause deadly outbreaks. Persistent skin colonization drives transmission and lethal sepsis although its basis remains mysterious. We compared the skin colonization dynamics of C. auris with its relative C. albicans , quantifying skin fungal persistence and distribution and immune composition and positioning. C. auris displayed a higher propensity to colonize hair follicles and avidly bound to human hair. While C. albicans triggered an effective sterilizing type 3/17 antifungal immune response driven by IL-17A/F-producing lymphocytes, C. auris triggered a type 1, IFNγ-driven immune response targeting hair follicles. Rather than promoting fungal clearance, IFNγ enhanced C. auris skin colonization by acting directly on keratinocytes impairing epithelial barrier integrity and repressing antifungal defense programs. C. auris exploits focal skin immune responses to create a niche for persistence in hair follicles.

View this product on CiteAb