Product Citations: 8

Epi-microRNA mediated metabolic reprogramming counteracts hypoxia to preserve affinity maturation.

In Nature Communications on 3 December 2024 by Nakagawa, R., Llorian, M., et al.

To increase antibody affinity against pathogens, positively selected GC-B cells initiate cell division in the light zone (LZ) of germinal centers (GCs). Among these, higher-affinity clones migrate to the dark zone (DZ) and vigorously proliferate by utilizing energy provided by oxidative phosphorylation (OXPHOS). However, it remains unknown how positively selected GC-B cells adapt their metabolism for cell division in the glycolysis-dominant, cell cycle arrest-inducing, hypoxic LZ microenvironment. Here, we show that microRNA (miR)-155 mediates metabolic reprogramming during positive selection to protect high-affinity clones. Mechanistically, miR-155 regulates H3K36me2 levels in hypoxic conditions by directly repressing the histone lysine demethylase, Kdm2a, whose expression increases in response to hypoxia. The miR-155-Kdm2a interaction is crucial for enhancing OXPHOS through optimizing the expression of vital nuclear mitochondrial genes under hypoxia, thereby preventing excessive production of reactive oxygen species and subsequent apoptosis. Thus, miR-155-mediated epigenetic regulation promotes mitochondrial fitness in high-affinity GC-B cells, ensuring their expansion and consequently affinity maturation.
© 2024. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Cell Biology

Soluble CTLA-4 mainly produced by Treg cells inhibits type 1 inflammation without hindering type 2 immunity to allow for inflammation resolution

Preprint on BioRxiv : the Preprint Server for Biology on 26 May 2023 by Osaki, M. & Sakaguchi, S.

CTLA-4 exists as membrane (mCTLA-4) and soluble (sCTLA-4) forms. Here, we show that effector-type regulatory T cells (Tregs) are main sCTLA-4 producers in basal and inflammatory states with distinct kinetics upon TCR stimulation. Mice specifically deficient in sCTLA-4 production exhibited spontaneous activation of Th1, Th17, Tfh, and Tc1 cells, autoantibody and IgE production, M1-like macrophage polarization, and impaired wound healing. In contrast, sCTLA-4-intact mCTLA-4-deficient mice, when compared with double-deficient mice, developed milder systemic inflammation and showed predominant activation/differentiation of Th2, M2-like macrophages, and eosinophils. Consistently, recombinant sCTLA-4 inhibited in vitro differentiation of naïve T cells towards Th1 through CD80/CD86 blockade on antigen-presenting cells, but did not affect Th2 differentiation. Moreover, sCTLA-4-intact mCTLA-4-deficient Tregs effectively suppressed Th1-mediated experimental colitis whereas double-deficient Tregs did not. Thus, sCTLA-4 production by Tregs during chronic inflammation is instrumental in controlling type 1 immunity while allowing type 2 immunity to dominate and facilitate inflammation resolution.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

MAIT cells activate dendritic cells to promote TFH cell differentiation and induce humoral immunity.

In Cell Reports on 25 April 2023 by Pankhurst, T. E., Buick, K. H., et al.

Protective immune responses against respiratory pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, are initiated by the mucosal immune system. However, most licensed vaccines are administered parenterally and are largely ineffective at inducing mucosal immunity. The development of safe and effective mucosal vaccines has been hampered by the lack of a suitable mucosal adjuvant. In this study we explore a class of adjuvant that harnesses mucosal-associated invariant T (MAIT) cells. We show evidence that intranasal immunization of MAIT cell agonists co-administered with protein, including the spike receptor binding domain from SARS-CoV-2 virus and hemagglutinin from influenza virus, induce protective humoral immunity and immunoglobulin A production. MAIT cell adjuvant activity is mediated by CD40L-dependent activation of dendritic cells and subsequent priming of T follicular helper cells. In summary, we show that MAIT cells are promising vaccine targets that can be utilized as cellular adjuvants in mucosal vaccines.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Dysbiotic gut microbiome, genetically predisposed or chemically disrupted, has been linked with insulin-dependent diabetes (IDD) including autoimmune type 1 diabetes (T1D) in both humans and animal models. However, specific IDD-inducing gut bacteria remain to be identified and their casual role in disease development demonstrated via experiments that can fulfill Koch's postulates.
Here, we show that novel gut pathobionts in the Muribaculaceae family, enriched by a low-dose dextran sulfate sodium (DSS) treatment, translocated to the pancreas and caused local inflammation, beta cell destruction and IDD in C57BL/6 mice. Antibiotic removal and transplantation of gut microbiota showed that this low DSS disrupted gut microbiota was both necessary and sufficient to induce IDD. Reduced butyrate content in the gut and decreased gene expression levels of an antimicrobial peptide in the pancreas allowed for the enrichment of selective members in the Muribaculaceae family in the gut and their translocation to the pancreas. Pure isolate of one such members induced IDD in wildtype germ-free mice on normal diet either alone or in combination with normal gut microbiome after gavaged into stomach and translocated to pancreas. Potential human relevance of this finding was shown by the induction of pancreatic inflammation, beta cell destruction and IDD development in antibiotic-treated wildtype mice via transplantation of gut microbiome from patients with IDD including autoimmune T1D.
The pathobionts that are chemically enriched in dysbiotic gut microbiota are sufficient to induce insulin-dependent diabetes after translocation to the pancreas. This indicates that IDD can be mainly a microbiome-dependent disease, inspiring the need to search for novel pathobionts for IDD development in humans. Video Abstract.
© 2023. The Author(s).

  • Mus musculus (House mouse)
  • Endocrinology and Physiology

Microbiota-derived acetate enhances host antiviral response via NLRP3.

In Nature Communications on 6 February 2023 by Niu, J., Cui, M., et al.

Pathogenic viral infections represent a major challenge to human health. Host immune responses to respiratory viruses are closely associated with microbiome and metabolism via the gut-lung axis. It has been known that host defense against influenza A virus (IAV) involves activation of the NLRP3 inflammasome, however, mechanisms behind the protective function of NLRP3 are not fully known. Here we show that an isolated bacterial strain, Bifidobacterium pseudolongum NjM1, enriched in the gut microbiota of Nlrp3-/- mice, protects wild-type but not Nlrp3 deficient mice against IAV infection. This effect depends on the enhanced production of type I interferon (IFN-I) mediated by NjM1-derived acetate. Application of exogenous acetate reproduces the protective effect of NjM1. Mechanistically, NLRP3 bridges GPR43 and MAVS, and promotes the oligomerization and signalling of MAVS; while acetate enhances MAVS aggregation upon GPR43 engagement, leading to elevated IFN-I production. Thus, our data support a model of NLRP3 mediating enhanced induction of IFN-I via acetate-producing bacterium and suggest that the acetate-GPR43-NLRP3-MAVS-IFN-I signalling axis is a potential therapeutic target against respiratory viral infections.
© 2023. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
View this product on CiteAb