Product Citations: 22

NKp46 is a critical regulator of natural killer (NK) cell immunity, but its function in non-NK innate immune cells remains unclear. Here, we show that NKp46 is indispensable for expressing IL-2 receptor-α (IL-2Rα) by non-NK liver-resident type-1 innate lymphoid cells (ILC1s). Deletion of NKp46 reduces IL-2Rα on ILC1s by downregulating NF-κB signaling, thus impairing ILC1 proliferation and cytotoxicity in vitro and in vivo. The binding of anti-NKp46 antibody to NKp46 triggers the activation of NF-κB, the expression of IL-2Rα, interferon-γ (IFN-γ), tumor necrosis factor (TNF), proliferation, and cytotoxicity. Functionally, NKp46 expressed on mouse ILC1s interacts with tumor cells through cell-cell contact, increasing ILC1 production of IFN-γ and TNF, and enhancing cytotoxicity. In a mouse model of acute myeloid leukemia, deletion of NKp46 impairs the ability of ILC1s to control tumor growth and reduces survival. This can be reversed by injecting NKp46+ ILC1s into NKp46 knock-out mice. Human NKp46+ ILC1s exhibit stronger cytokine production and cytotoxicity than their NKp46- counterparts, suggesting that NKp46 plays a similar role in humans. These findings identify an NKp46-NF-κB-IL-2Rα axis and suggest that activating NKp46 with an anti-NKp46 antibody may provide a potential strategy for anti-tumor innate immunity.
© 2025. The Author(s).

  • Mus musculus (House mouse)
  • Cancer Research

Fatty acid metabolites, produced by cytochrome P450 enzymes and soluble epoxide hydrolase (sEH), regulate inflammation. Here, we report that the transforming growth factor β (TGF-β)-induced polarization of macrophages to a pro-resolving phenotype requires Alk5 and Smad2 activation to increase sEH expression and activity. Macrophages lacking sEH showed impaired repolarization, reduced phagocytosis, and maintained a pro-inflammatory gene expression profile. 11,12-Epoxyeicosatrienoic acid (EET) was one altered metabolite in sEH-/- macrophages and mimicked the effect of sEH deletion on gene expression. Notably, 11,12-EET also reduced Alk5 expression, inhibiting TGF-β-induced Smad2 phosphorylation by triggering the cytosolic translocation of the E3 ligase Smurf2. These findings suggest that sEH expression is controlled by TGF-β and that sEH activity, which lowers 11,12-EET levels and promotes TGF-β signaling by metabolizing 11,12-EET to prevent Alk5 degradation. Thus, an autocrine loop between sEH/11,12-EET and TGF-β1 regulates macrophage function.
© 2024 The Author(s).

Tumor-associated neutrophil precursors impair homologous DNA repair and promote sensitivity to PARP-inhibition

Preprint on Research Square on 4 June 2024 by Mukherjee, S., Elia, A., et al.

Abstract Tumor evolution is one of the major mechanisms responsible for acquiring therapy-resistant and more aggressive cancer clones. Whether the tumor microenvironment through immune-mediated mechanisms might promote the development of more aggressive cancer types is crucial for the identification of additional therapeutical opportunities. Here, we identified a novel subset of tumor-associated neutrophils, defined as tumor-associated neutrophil precursors (PreNeu). These PreNeu are enriched in highly proliferative hormone-dependent breast cancers and impair DNA repair capacity.  Mechanistically, succinate secreted by tumor-associated PreNeu inhibits homologous recombination, promoting error-prone DNA repair through non-homologous end-joining regulated by PARP-1. Consequently, breast cancer cells acquire genomic instability, promoting tumor editing and progression. Selective inhibition of these pathways induces increased tumor cell killing in vitro and in vivo. Tumor-associated PreNeu score correlates with copy number alterations in highly proliferative hormone-dependent tumors from breast cancer patients. Treatment with PARP-1 inhibitors counteract the pro-tumorigenic effect of these neutrophils and synergize with combined immunotherapeutic approaches.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Genetics

Minute virus of mice shows oncolytic activity against pancreatic cancer cells exhibiting a mesenchymal phenotype.

In Molecular Therapy. Oncology on 21 March 2024 by Vienne, M., Lopez, C., et al.

Pancreatic cancer will soon become the second cause of death by cancer in Western countries. The main barrier to increase the survival of patients with this disease requires the development of novel and efficient therapeutic strategies that better consider tumor biology. In this context, oncolytic viruses emerge as promising therapeutics. Among them, the fibrotropic minute virus of mice prototype (MVMp) preferentially infects migrating and undifferentiated cells that highly resemble poorly differentiated, basal-like pancreatic tumors showing the worst clinical outcome. We report here that MVMp specifically infects, replicates in, and kills pancreatic cancer cells from murine and human origin with a mesenchymal, basal-like profile, while sparing cancer cells with an epithelial phenotype. Remarkably, MVMp infection, at a dose that does not provoke tumor growth inhibition in athymic mice, shows significant antitumoral effect in immune-competent models; extended mouse survival; and promoted the massive infiltration of tumors by innate, myeloid, and cytotoxic T cells that exhibit a less terminally exhausted phenotype. Collectively, we demonstrate herein for the first time that MVMp is specific and oncolytic for pancreatic tumors with mesenchymal, basal-like profile, paving the way for precision-medicine opportunities for the management of the most aggressive and lethal form of this disease.
© 2024 The Author(s).

  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Role of the soluble epoxide hydrolase in keratinocyte proliferation and sensitivity of skin to inflammatory stimuli.

In Biomedicine Pharmacotherapy = Biomédecine Pharmacothérapie on 1 February 2024 by Naeem, Z., Zukunft, S., et al.

The lipid content of skin plays a determinant role in its barrier function with a particularly important role attributed to linoleic acid and its derivatives. Here we explored the consequences of interfering with the soluble epoxide hydrolase (sEH) on skin homeostasis. sEH; which converts fatty acid epoxides generated by cytochrome P450 enzymes to their corresponding diols, was largely restricted to the epidermis which was enriched in sEH-generated diols. Global deletion of the sEH increased levels of epoxides, including the linoleic acid-derived epoxide; 12,13-epoxyoctadecenoic acid (12,13-EpOME), and increased basal keratinocyte proliferation. sEH deletion (sEH-/- mice) resulted in thicker differentiated spinous and corneocyte layers compared to wild-type mice, a hyperkeratosis phenotype that was reproduced in wild-type mice treated with a sEH inhibitor. sEH deletion made the skin sensitive to inflammation and sEH-/- mice developed thicker imiquimod-induced psoriasis plaques than the control group and were more prone to inflammation triggered by mechanical stress with pronounced infiltration and activation of neutrophils as well as vascular leak and increased 12,13-EpOME and leukotriene (LT) B4 levels. Topical treatment of LTB4 antagonist after stripping successfully inhibited inflammation and neutrophil infiltration both in wild type and sEH-/- skin. While 12,13-EpoME had no effect on the trans-endothelial migration of neutrophils, like LTB4, it effectively induced neutrophil adhesion and activation. These observations indicate that while the increased accumulation of neutrophils in sEH-deficient skin could be attributed to the increase in LTB4 levels, both 12,13-EpOME and LTB4 contribute to neutrophil activation. Our observations identify a protective role of the sEH in the skin and should be taken into account when designing future clinical trials with sEH inhibitors.
Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb