Product Citations: 3

Longitudinal analysis of peripheral immune cells in patients with multiple sclerosis treated with anti-CD20 therapy.

In Annals of Clinical and Translational Neurology on 1 October 2024 by Waede, M., Voss, L. F., et al.

Anti-CD20 therapy is a highly effective treatment for multiple sclerosis (MS). In this study, we investigated MS-related changes in peripheral blood mononuclear cell (PBMC) subsets compared to healthy controls and longitudinal changes related to the treatment.
Multicolor spectral flow cytometry analysis was performed on 78 samples to characterize disease- and treatment-related PBMC clusters. Blood samples from MS patients were collected at baseline and up to 8 months post-treatment, with three collection points after treatment initiation. Unsupervised clustering tools and manual gating were applied to identify subclusters of interest and quantify changes.
B cells were depleted from the periphery after anti-CD20 treatment as expected, and we observed an isolated acute, transitory drop in the proportion of natural killer (NK) and NKT cells among the main populations of PBMC (P = 0.03, P = 0.004). Major affected PBMC subpopulations were cytotoxic immune cells (NK, NKT, and CD8+ T cells), and we observed a higher proportion of cytotoxic cells with reduced brain-homing ability and a higher regulatory function as a long-term anti-CD20-related effect. Additionally, anti-CD20 therapy altered distributions of memory CD8+ T cells and reduced exhaustion markers in both CD4+ and CD8+ T cells.
The findings of this study elucidate phenotypic clusters of NK and CD8+ T cells, which have previously been underexplored in the context of anti-CD20 therapy. Phenotypic modifications towards a more regulatory and controlled phenotype suggest that these subpopulations may play a critical and previously unrecognized role in mediating the therapeutic efficacy of anti-CD20 treatments.
© 2024 The Author(s). Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

  • Immunology and Microbiology

Delayed production of neutralizing antibodies correlates with fatal COVID-19.

In Nature Medicine on 1 July 2021 by Lucas, C., Klein, J., et al.

Recent studies have provided insights into innate and adaptive immune dynamics in coronavirus disease 2019 (COVID-19). However, the exact features of antibody responses that govern COVID-19 disease outcomes remain unclear. In this study, we analyzed humoral immune responses in 229 patients with asymptomatic, mild, moderate and severe COVID-19 over time to probe the nature of antibody responses in disease severity and mortality. We observed a correlation between anti-spike (S) immunoglobulin G (IgG) levels, length of hospitalization and clinical parameters associated with worse clinical progression. Although high anti-S IgG levels correlated with worse disease severity, such correlation was time dependent. Deceased patients did not have higher overall humoral response than discharged patients. However, they mounted a robust, yet delayed, response, measured by anti-S, anti-receptor-binding domain IgG and neutralizing antibody (NAb) levels compared to survivors. Delayed seroconversion kinetics correlated with impaired viral control in deceased patients. Finally, although sera from 85% of patients displayed some neutralization capacity during their disease course, NAb generation before 14 d of disease onset emerged as a key factor for recovery. These data indicate that COVID-19 mortality does not correlate with the cross-sectional antiviral antibody levels per se but, rather, with the delayed kinetics of NAb production.
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.

  • COVID-19

Characterization and Comparison of GITR Expression in Solid Tumors.

In Clinical Cancer Research on 1 November 2019 by Vence, L., Bucktrout, S. L., et al.

Determine the differential effect of a FcγR-binding, mIgG2a anti-GITR antibody in mouse tumor models, and characterize the tumor microenvironment for the frequency of GITR expression in T-cell subsets from seven different human solid tumors.Experimental Design: For mouse experiments, wild-type C57BL/6 mice were subcutaneously injected with MC38 cells or B16 cells, and BALB/c mice were injected with CT26 cells. Mice were treated with the anti-mouse GITR agonist antibody 21B6, and tumor burden and survival were monitored. GITR expression was evaluated at the single-cell level using flow cytometry (FC). A total of 213 samples were evaluated for GITR expression by IHC, 63 by FC, and 170 by both in seven human solid tumors: advanced hepatocellular carcinoma, non-small cell lung cancer (NSCLC), renal cell carcinoma, pancreatic carcinoma, head and neck carcinoma, melanoma, and ovarian carcinoma.
The therapeutic benefit of 21B6 was greatest in CT26 followed by MC38, and was least in the B16 tumor model. The frequency of CD8 T cells and effector CD4 T cells within the immune infiltrate correlated with response to treatment with GITR antibody. Analysis of clinical tumor samples showed that NSCLC, renal cell carcinoma, and melanoma had the highest proportions of GITR-expressing cells and highest per-cell density of GITR expression on CD4+ Foxp3+ T regulatory cells. IHC and FC data showed similar trends with a good correlation between both techniques.
Human tumor data suggest that NSCLC, renal cell carcinoma, and melanoma should be the tumor subtypes prioritized for anti-GITR therapy development.
©2019 American Association for Cancer Research.

  • Cancer Research
View this product on CiteAb