Product Citations: 22

Cytomegalovirus is a promising vaccine vector; however, mechanisms promoting CD4 T cell responses to challenge, by CMV as a vector, are unknown. The ability of MCMV to prolong immunity generated by short-lived malaria vaccine was tested. MCMV provided non-specific protection to challenge with Plasmodium and increased interleukin-12 (IL-12) and CD8α+ dendritic cell (DC) numbers through prolonged MCMV-dependent interferon gamma (IFN-γ) production. This late innate response to MCMV increased IL-12 upon challenge and increased the polyclonal CD4 effector T cell response to Plasmodium, protecting in an IL-12-dependent manner. Although Plasmodium-vaccine-induced protection decayed by d200, MCMV restored protection through IFN-γ. Mechanistically, protection depended on MCMV-induced-IFN-γ increasing CD8α+ DCs and IL-12p40. MCMV expressing a Plasmodium epitope increased parasite-specific CD4 effector and effector memory T cells persisting after malaria vaccination, both phenotypes reported to protect. Overall, enhanced innate cell status, a mechanism of heterologous protection by MCMV, led to a stronger T cell response to challenge.
© 2024 The Authors.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

As the new SARS-CoV-2 Omicron variants and subvariants emerge, there is an urgency to develop intranasal, broadly protective vaccines. Here, we developed highly efficacious, intranasal trivalent SARS-CoV-2 vaccine candidates (TVC) based on three components of the MMR vaccine: measles virus (MeV), mumps virus (MuV) Jeryl Lynn (JL1) strain, and MuV JL2 strain. Specifically, MeV, MuV-JL1, and MuV-JL2 vaccine strains, each expressing prefusion spike (preS-6P) from a different variant of concern (VoC), were combined to generate TVCs. Intranasal immunization of IFNAR1-/- mice and female hamsters with TVCs generated high levels of S-specific serum IgG antibodies, broad neutralizing antibodies, and mucosal IgA antibodies as well as tissue-resident memory T cells in the lungs. The immunized female hamsters were protected from challenge with SARS-CoV-2 original WA1, B.1.617.2, and B.1.1.529 strains. The preexisting MeV and MuV immunity does not significantly interfere with the efficacy of TVC. Thus, the trivalent platform is a promising next-generation SARS-CoV-2 vaccine candidate.
© 2024. The Author(s).

  • Mus musculus (House mouse)
  • COVID-19
  • Immunology and Microbiology

Researchers who aim to globally analyze the gastrointestinal immune system via flow cytometry have many protocol options to choose from, with specifics generally tied to gut wall layers of interest. To get a clearer idea of the approach we should use on full-thickness colon samples from mice, we first undertook a systematic comparison of three tissue dissociation techniques: two based on enzymatic cocktails and the other one based on manual crushing. Using flow cytometry panels of general markers of lymphoid and myeloid cells, we found that the presence of cell-surface markers and relative cell population frequencies were more stable with the mechanical method. Both enzymatic approaches were associated with a marked decrease of several cell-surface markers. Using mechanical dissociation, we then developed two minimally overlapping panels, consisting of a total of 26 antibodies, for serial profiling of lymphoid and myeloid lineages from the mouse colon in greater detail. Here, we highlight how we accurately delineate these populations by manual gating, as well as the reproducibility of our panels on mouse spleen and whole blood. As a proof-of-principle of the usefulness of our general approach, we also report segment- and life stage-specific patterns of immune cell profiles in the colon. Overall, our data indicate that mechanical dissociation is more suitable and efficient than enzymatic methods for recovering immune cells from all colon layers at once. Additionally, our panels will provide researchers with a relatively simple tool for detailed immune cell profiling in the murine gastrointestinal tract, regardless of life stage or experimental conditions.
© 2024. The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Combining toll-like receptor agonists with immune checkpoint blockade affects antitumor vaccine efficacy.

In Journal for Immunotherapy of Cancer on 3 May 2024 by Jeon, D., Hill, E., et al.

T cell checkpoint receptors are expressed when T cells are activated, and modulation of the expression or signaling of these receptors can alter the function of T cells and their antitumor efficacy. We previously found that T cells activated with cognate antigen had increases in the expression of PD-1, and this was attenuated in the presence of multiple toll-like receptor (TLR) agonists, notably TLR3 plus TLR9. In the current report, we sought to investigate whether combining TLR agonists with immune checkpoint blockade can further augment vaccine-mediated T cell antitumor immunity in murine tumor models.
TLR agonists (TLR3 plus TLR9) and immune checkpoint inhibitors (antibodies targeting PD-1, CTLA-4, LAG-3, TIM-3 or VISTA) were combined and delivered with vaccines or vaccine-activated CD8+T cells to E.G7-OVA or MyC-CaP tumor-bearing mice. Tumors were assessed for growth and then collected and analyzed by flow cytometry.
Immunization of E.G7-OVA tumor-bearing mice with SIINFEKL peptide vaccine, coadministered with TLR agonists and αCTLA-4, demonstrated greater antitumor efficacy than immunization with TLR agonists or αCTLA-4 alone. Conversely, the antitumor efficacy was abrogated when vaccine and TLR agonists were combined with αPD-1. TLR agonists suppressed PD-1 expression on regulatory T cells (Tregs) and activated this population. Depletion of Tregs in tumor-bearing mice led to greater antitumor efficacy of this combination therapy, even in the presence of αPD-1. Combining vaccination with TLR agonists and αCTLA-4 or αLAG-3 showed greater antitumor than with combinations with αTIM-3 or αVISTA.
The combination of TLR agonists and αCTLA-4 or αLAG-3 can further improve the efficacy of a cancer vaccine, an effect not observed using αPD-1 due to activation of Tregs when αPD-1 was combined with TLR3 and TLR9 agonists. These data suggest that optimal combinations of TLR agonists and immune checkpoint blockade may improve the efficacy of human anticancer vaccines.
© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

The lncRNA Malat1 inhibits miR-15/16 to enhance cytotoxic T cell activation and memory cell formation.

In eLife on 21 December 2023 by Wheeler, B., Gagnon, J. D., et al.

Proper activation of cytotoxic T cells via the T cell receptor and the costimulatory receptor CD28 is essential for adaptive immunity against viruses, intracellular bacteria, and cancers. Through biochemical analysis of RNA:protein interactions, we uncovered a non-coding RNA circuit regulating activation and differentiation of cytotoxic T cells composed of the long non-coding RNA Malat1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) and the microRNA family miR-15/16. miR-15/16 is a widely and highly expressed tumor suppressor miRNA family important for cell proliferation and survival. miR-15/16 play important roles in T cell responses to viral infection, including the regulation of antigen-specific T cell expansion and memory. Comparative Argonaute-2 high-throughput sequencing of crosslinking immunoprecipitation (AHC) combined with gene expression profiling in normal and miR-15/16-deficient mouse T cells revealed a large network of hundreds of direct miR-15/16 target mRNAs, many with functional relevance for T cell activation, survival and memory formation. Among these targets, Malat1 contained the largest absolute magnitude miR-15/16-dependent AHC peak. This binding site was among the strongest lncRNA:miRNA interactions detected in the T cell transcriptome. We used CRISPR targeting with homology directed repair to generate mice with a 5-nucleotide mutation in the miR-15/16-binding site in Malat1. This mutation interrupted Malat1:miR-15/16 interaction, and enhanced the repression of other miR-15/16 target genes, including CD28. Interrupting Malat1 interaction with miR-15/16 decreased cytotoxic T cell activation, including the expression of interleukin 2 (IL-2) and a broader CD28-responsive gene program. Accordingly, Malat1 mutation diminished memory cell persistence in mice following LCMV Armstrong and Listeria monocytogenes infection. This study marks a significant advance in the study of long non-coding RNAs in the immune system by ascribing cell-intrinsic, sequence-specific in vivo function to Malat1. These findings have implications for T cell-mediated autoimmune diseases, antiviral and anti-tumor immunity, as well as lung adenocarcinoma and other malignancies where Malat1 is overexpressed.
© 2023, Wheeler et al.

  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb