Product Citations: 11

Human germline heterozygous gain-of-function STAT6 variants cause severe allergic disease.

In The Journal of Experimental Medicine on 1 May 2023 by Sharma, M., Leung, D., et al.

STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. We have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. The cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). All patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and TH2 skewing. Precision treatment with the anti-IL-4Rα antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. This study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder.© 2023 Sharma et al.

Understanding immune cell dynamics after intestinal transplantation has provided new insights into human lymphocyte biology. However, isolating and characterizing such cells can be challenging. Here, we provide a protocol to isolate intraepithelial and lamina propria lymphocytes from human ileal biopsies. We describe techniques for flow cytometric analysis and determination of multilineage chimerism and T lymphocyte phenotypes. This protocol can be modified to isolate and analyze lymphocytes from other tissues. For complete details on the use and execution of this protocol, please refer to Fu et al. (2019)1 and Fu et al. (2021).2.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Homo sapiens (Human)
  • Immunology and Microbiology

Cross-protective antibodies against common endemic respiratory viruses.

In Nature Communications on 13 February 2023 by Cabán, M., Rodarte, J. V., et al.

Respiratory syncytial virus (RSV), human metapneumovirus (HMPV), and human parainfluenza virus types one (HPIV1) and three (HPIV3) can cause severe disease and death in immunocompromised patients, the elderly, and those with underlying lung disease. A protective monoclonal antibody exists for RSV, but clinical use is limited to high-risk infant populations. Hence, therapeutic options for these viruses in vulnerable patient populations are currently limited. Here, we present the discovery, in vitro characterization, and in vivo efficacy testing of two cross-neutralizing monoclonal antibodies, one targeting both HPIV3 and HPIV1 and the other targeting both RSV and HMPV. The 3 × 1 antibody is capable of targeting multiple parainfluenza viruses; the MxR antibody shares features with other previously reported monoclonal antibodies that are capable of neutralizing both RSV and HMPV. We obtained structures using cryo-electron microscopy of these antibodies in complex with their antigens at 3.62 Å resolution for 3 × 1 bound to HPIV3 and at 2.24 Å for MxR bound to RSV, providing a structural basis for in vitro binding and neutralization. Together, a cocktail of 3 × 1 and MxR could have clinical utility in providing broad protection against four of the respiratory viruses that cause significant morbidity and mortality in at-risk individuals.
© 2023. The Author(s).

  • FC/FACS
  • Immunology and Microbiology

Cross-Protective Antibodies Against Common Endemic Respiratory Viruses

Preprint on BioRxiv : the Preprint Server for Biology on 26 June 2022 by Cabán, M., Rodarte, J. V., et al.

h4>ABSTRACT/h4> Respiratory syncytial virus (RSV), human metapneumovirus (HMPV), and human parainfluenza virus types one (HPIV1) and three (HPIV3) are a major cause of death, morbidity, and health care costs worldwide, and they can exact a significant toll on immunocompromised patients, the elderly, and those with underlying lung disease. There is an unmet medical need for safe and effective medications for many of the viruses responsible for common respiratory viral infections in vulnerable patient populations. While a protective monoclonal antibody exists for RSV, clinical use is limited to high-risk infant populations. Here, we present the discovery, in vitro characterization, and in vivo efficacy testing of two cross-neutralizing monoclonal antibodies, one targeting both HPIV3 and HPIV1 and the other targeting both RSV and HMPV. The 3×1 antibody is capable of targeting multiple parainfluenza viruses; the MxR antibody shares features with other previously reported monoclonal antibodies that are capable of neutralizing both RSV and HMPV. We obtained structures using cryo-electron microscopy of these antibodies in complex with their antigens to 3.62 Å resolution for 3×1:HPIV3 and to 2.24 Å for MxR:RSV, providing a structural basis to corroborate our in vitro characterization of binding and neutralization. Together, a cocktail of 3×1 and MxR could have clinical utility in providing broad protection against four of the respiratory viruses that cause significant morbidity and mortality in at-risk individuals.

  • Immunology and Microbiology

Progressive genetic modifications of porcine cardiac xenografts extend survival to 9 months.

In Xenotransplantation on 1 May 2022 by Mohiuddin, M. M., Goerlich, C. E., et al.

We report orthotopic (life-supporting) survival of genetically engineered porcine cardiac xenografts (with six gene modifications) for almost 9 months in baboon recipients. This work builds on our previously reported heterotopic cardiac xenograft (three gene modifications) survival up to 945 days with an anti-CD40 monoclonal antibody-based immunosuppression. In this current study, life-supporting xenografts containing multiple human complement regulatory, thromboregulatory, and anti-inflammatory proteins, in addition to growth hormone receptor knockout (KO) and carbohydrate antigen KOs, were transplanted in the baboons. Selective "multi-gene" xenografts demonstrate survival greater than 8 months without the requirement of adjunctive medications and without evidence of abnormal xenograft thickness or rejection. These data demonstrate that selective "multi-gene" modifications improve cardiac xenograft survival significantly and may be foundational for paving the way to bridge transplantation in humans.
© 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  • FC/FACS
  • Sus scrofa domesticus (Domestic pig)
  • Papio anubis (Olive Baboon)
  • Cardiovascular biology
  • Genetics
  • Veterinary Research
View this product on CiteAb