Product Citations: 39

Mutation in CDC42 Gene Set as a Response Biomarker for Immune Checkpoint Inhibitor Therapy.

In Cancer Medicine on 1 January 2025 by Wang, K., Zhang, Y., et al.

Immune checkpoint inhibitors (ICIs) have achieved great success; however, a subset of patients exhibits no response. Consequently, there is a critical need for reliable predictive biomarkers. Our focus is on CDC42, which stimulates multiple signaling pathways promoting tumor growth. We hypothesize that an impaired function of CDC42 may serve as an indicator of a patient's response to ICI therapy.
We consider CDC42 and its downstream binding and effector proteins as a gene set, as mutations in these components could lead to defective CDC42 function. To elucidate the biomarker function of mutations within the CDC42 gene set, we curated a comprehensive discovery dataset that included seven ICI treatment cohorts. And we curated two ICI treatment cohorts for validation. We explored the mechanism based on The Cancer Genome Atlas database. We also examined whether combining a CDC42 inhibitor with ICI could enhance ICI's efficacy.
Mutations in the CDC42 gene set were associated with improved overall survival and progression-free survival. Furthermore, our analysis of immune response landscapes among different statuses of the CDC42 gene set supports its role as a biomarker. Animal experiments also revealed that the combination of the CDC42 inhibitor (ML141) with anti-PD-1 blockade can additively reduce tumor growth.
Our study suggests that the CDC42 gene set mutations could potentially serve as a novel biomarker for the clinical response to ICI treatment. This finding also provides insights into the potential of combining ICI and CDC42 inhibitor use for more efficient patient treatment.
© 2025 The Author(s). Cancer Medicine published by John Wiley & Sons Ltd.

  • FC/FACS
  • Cancer Research
  • Immunology and Microbiology

Sphingolipid biosynthesis is essential for metabolic rewiring during TH17 cell differentiation.

In Science Advances on 26 April 2024 by Abimannan, T., Parthibane, V., et al.

T helper 17 (TH17) cells are implicated in autoimmune diseases, and several metabolic processes are shown to be important for their development and function. In this study, we report an essential role for sphingolipids synthesized through the de novo pathway in TH17 cell development. Deficiency of SPTLC1, a major subunit of serine palmitoyl transferase enzyme complex that catalyzes the first and rate-limiting step of de novo sphingolipid synthesis, impaired glycolysis in differentiating TH17 cells by increasing intracellular reactive oxygen species (ROS) through enhancement of nicotinamide adenine dinucleotide phosphate oxidase 2 activity. Increased ROS leads to impaired activation of mammalian target of rapamycin C1 and reduced expression of hypoxia-inducible factor 1-alpha and c-Myc-induced glycolytic genes. SPTLCI deficiency protected mice from developing experimental autoimmune encephalomyelitis and experimental T cell transfer colitis. Our results thus show a critical role for de novo sphingolipid biosynthetic pathway in shaping adaptive immune responses with implications in autoimmune diseases.

  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Cell Biology

CD25, also known as the interleukin-2 receptor α chain (IL-2Rα), is highly expressed on regulatory T cells (Tregs), but relatively lower on effector T cells (Teffs). This makes it a potential target for Treg depletion, which can be used in tumor immunotherapy. However, marketed anti-CD25 antibodies (Basiliximab and Daclizumab) were originally developed as immunosuppressive drugs to prevent graft rejection, because these antibodies can block IL-2 binding to CD25 on Teffs, which in turn destroys the function of Teffs. Recent studies have shown that non-IL-2-blocking anti-CD25 antibodies have displayed exciting antitumor effects. Here, we screened out a non-IL-2-blocking anti-CD25 monoclonal antibody (mAb) 7B7 by hybridoma technology, and confirmed its antitumor activity via depleting Tregs in a CD25 humanized mouse model. Subsequently, we verified that the humanized 7B7, named as h7B7-15S, has comparable activities to 7B7, and that its Treg depletion is further increased when combined with anti-CTLA-4, leading to enhanced remodeling of the tumor immune microenvironment. Moreover, our findings reveal that the Fab form of h7B7-15S has the ability to deplete Tregs, independent of the Fc region. Taken together, our studies expand the application of anti-CD25 in tumor immunotherapy and provide insight into the underlying mechanism.
© 2024 UICC.

  • Mus musculus (House mouse)
  • Cancer Research

Due to the intracellular expression of Foxp3 it is impossible to purify viable Foxp3+ cells on the basis of Foxp3 staining. Consequently CD4+Foxp3+ regulatory T cells (Tregs) in mice have mostly been characterized using CD4+CD25+ T cells or GFP-Foxp3 reporter T cells. However, these two populations cannot faithfully represent Tregs as the expression of CD25 and Foxp3 does not completely overlap and GFP+Foxp3+ reporter T cells have been reported to be functionally altered. The aim of this study was to characterize normal Tregs without separating Foxp3+ and Foxp3- cells for the expression of the main functional molecules and proliferation behaviors by flow cytometry and to examine their gene expression characteristics through differential gene expression. Our data showed that the expressions of Foxp3, CD25, CTLA-4 (both intracellular and cell surface) and PD-1 was mostly confined to CD4+ T cells and the expression of Foxp3 did not completely overlap with the expression of CD25, CTLA-4 or PD-1. Despite higher levels of expression of the T cell inhibitory molecules CTLA-4 and PD-1, Tregs maintained higher levels of Ki-67 expression in the homeostatic state and had greater proliferation in vivo after allo-activation than Tconv. Differential gene expression analysis revealed that resting Tregs exhibited immune activation markers characteristic of activated Tconv. This is consistent with the flow data that the T cell activation markers CD25, CTLA-4, PD-1, and Ki-67 were much more strongly expressed by Tregs than Tconv in the homeostatic state.
Copyright © 2024 Liu, Baines, Niessen, Heer, Clark, Bishop and Trevillian.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

The only FDA-approved oral immunotherapy for a food allergy provides protection against accidental exposure to peanuts. However, this therapy often causes discomfort or side effects and requires long-term commitment. Better preventive and therapeutic solutions are urgently needed. We develop a tolerance-inducing vaccine technology that utilizes glycosylation-modified antigens to induce antigen-specific non-responsiveness. The glycosylation-modified antigens are administered intravenously (i.v.) or subcutaneously (s.c.) and traffic to the liver or lymph nodes, respectively, leading to preferential internalization by antigen-presenting cells, educating the immune system to respond in an innocuous way. In a mouse model of cow's milk allergy, treatment with glycosylation-modified β-lactoglobulin (BLG) is effective in preventing the onset of allergy. In addition, s.c. administration of glycosylation-modified BLG shows superior safety and potential in treating existing allergies in combination with anti-CD20 co-therapy. This platform provides an antigen-specific immunomodulatory strategy to prevent and treat food allergies.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb