Product Citations: 2

ZNF384 Fusion Oncoproteins Drive Lineage Aberrancy in Acute Leukemia.

In Blood Cancer Discovery on 5 May 2022 by Dickerson, K. M., Qu, C., et al.

ZNF384-rearranged fusion oncoproteins (FO) define a subset of lineage ambiguous leukemias, but their mechanistic role in leukemogenesis and lineage ambiguity is poorly understood. Using viral expression in mouse and human hematopoietic stem and progenitor cells (HSPC) and a Ep300::Znf384 knockin mouse model, we show that ZNF384 FO promote hematopoietic expansion, myeloid lineage skewing, and self-renewal. In mouse HSPCs, concomitant lesions, such as NRASG12D, were required for fully penetrant leukemia, whereas in human HSPCs, expression of ZNF384 FO drove B/myeloid leukemia, with sensitivity of a ZNF384-rearranged xenograft to FLT3 inhibition in vivo. Mechanistically, ZNF384 FO occupy a subset of predominantly intragenic/enhancer regions with increased histone 3 lysine acetylation and deregulate expression of hematopoietic stem cell transcription factors. These data define a paradigm for FO-driven lineage ambiguous leukemia, in which expression in HSPCs results in deregulation of lineage-specific genes and hematopoietic skewing, progressing to full leukemia in the context of proliferative stress.
Expression of ZNF384 FO early in hematopoiesis results in binding and deregulation of key hematopoietic regulators, skewing of hematopoiesis, and priming for leukemic transformation. These results reveal the interplay between cell of origin and expression of ZNF384 FO to mediate lineage ambiguity and leukemia development. This article is highlighted in the In This Issue feature, p. 171.
©2022 American Association for Cancer Research.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research

High PD-L1 Expression Predicts for Worse Outcome of Leukemia Patients with Concomitant NPM1 and FLT3 Mutations.

In International Journal of Molecular Sciences on 10 June 2019 by Brodská, B., Otevrelova, P., et al.

Compared to solid tumors, the role of PD-L1 in hematological malignancies is less explored, and the knowledge in this area is mostly limited to lymphomas. However, several studies indicated that PD-L1 is also overexpressed in myeloid malignancies. Successful treatment of the acute myeloid leukemia (AML) is likely associated with elimination of the residual disease by the immune system, and possible involvement of PD-L1 in this process remains to be elucidated. We analyzed PD-L1 expression on AML primary cells by flow cytometry and, in parallel, transcript levels were determined for the transcription variants v1 and v2. The ratio of v1/v2 cDNA correlated with the surface protein amount, and high v1/v2 levels were associated with worse overall survival (p = 0.0045). The prognostic impact of PD-L1 was limited to AML with mutated nucleophosmin and concomitant internal tandem duplications in the FLT3 gene (p less than 0.0001 for this particular AML subgroup).

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research
View this product on CiteAb