Product Citations: 3

Unedited allogeneic iNKT cells show extended persistence in MHC-mismatched canine recipients.

In Cell Reports Medicine on 17 October 2023 by Rotolo, A., Whelan, E. C., et al.

Allogeneic invariant natural killer T cells (allo-iNKTs) induce clinical remission in patients with otherwise incurable cancers and COVID-19-related acute respiratory failure. However, their functionality is inconsistent among individuals, and they become rapidly undetectable after infusion, raising concerns over rejection and limited therapeutic potential. We validate a strategy to promote allo-iNKT persistence in dogs, an established large-animal model for novel cellular therapies. We identify donor-specific iNKT biomarkers of survival and sustained functionality, conserved in dogs and humans and retained upon chimeric antigen receptor engineering. We reason that infusing optimal allo-iNKTs enriched in these biomarkers will prolong their persistence without requiring MHC ablation, high-intensity chemotherapy, or cytokine supplementation. Optimal allo-iNKTs transferred into MHC-mismatched dogs remain detectable for at least 78 days, exhibiting sustained immunomodulatory effects. Our canine model will accelerate biomarker discovery of optimal allo-iNKT products, furthering application of MHC-unedited allo-iNKTs as a readily accessible universal platform to treat incurable conditions worldwide.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology
  • Veterinary Research

The aberrant distribution of peripheral B cell subsets is associated with the pathogenesis of a variety of inflammatory and autoimmune diseases. However, the distribution of peripheral B cell subsets in patients with idiopathic dilated cardiomyopathy (DCM) remains to be elucidated.
Twenty-seven patients with idiopathic DCM (DCM group), 18 control patients with heart failure (HF group) and 21 healthy individuals (HC group) were included in this study. Peripheral B cell subsets were analysed using multicolour flow cytometry. The plasma β1 adrenergic receptor (β1-AR) autoantibody titre was determined using ELISA. Additionally, clinical features were also collected.
Compared with the HF and HC groups, the percentage of B1 cells was significantly decreased, whereas the percentage of transitional B cells (Tr) was significantly increased in the DCM group. Notably, the percentage of B1 cells was significantly lower in patients with β1-AR autoantibody-positive DCM than in β1-AR autoantibody-negative patients. The correlation analysis showed that the percentage of B1 cells was negatively correlated with N-terminal pro-brain natriuretic peptide (NT-proBNP) levels and positively correlated with the left ventricular ejection fraction in patients with DCM.
As shown in the present study, the percentage of B1 cells in the peripheral blood of patients with idiopathic DCM is abnormally decreased, especially in β1-AR autoantibody-positive patients, while the percentage of Tr cells is significantly increased, indicating that B1 cells and Tr cells may be implicated in the pathogenesis of idiopathic DCM. The decrease in the percentage of B1 cells is directly related to the severity of DCM.
© 2022. The Author(s).

  • FC/FACS
  • Cardiovascular biology
  • Immunology and Microbiology

Delineating spatiotemporal and hierarchical development of human fetal innate lymphoid cells.

In Cell Research on 1 October 2021 by Liu, C., Gong, Y., et al.

Whereas the critical roles of innate lymphoid cells (ILCs) in adult are increasingly appreciated, their developmental hierarchy in early human fetus remains largely elusive. In this study, we sorted human hematopoietic stem/progenitor cells, lymphoid progenitors, putative ILC progenitor/precursors and mature ILCs in the fetal hematopoietic, lymphoid and non-lymphoid tissues, from 8 to 12 post-conception weeks, for single-cell RNA-sequencing, followed by computational analysis and functional validation at bulk and single-cell levels. We delineated the early phase of ILC lineage commitment from hematopoietic stem/progenitor cells, which mainly occurred in fetal liver and intestine. We further unveiled interleukin-3 receptor as a surface marker for the lymphoid progenitors in fetal liver with T, B, ILC and myeloid potentials, while IL-3RA- lymphoid progenitors were predominantly B-lineage committed. Notably, we determined the heterogeneity and tissue distribution of each ILC subpopulation, revealing the proliferating characteristics shared by the precursors of each ILC subtype. Additionally, a novel unconventional ILC2 subpopulation (CRTH2- CCR9+ ILC2) was identified in fetal thymus. Taken together, our study illuminates the precise cellular and molecular features underlying the stepwise formation of human fetal ILC hierarchy with remarkable spatiotemporal heterogeneity.
© 2021. The Author(s).

  • FC/FACS
  • Cell Biology
View this product on CiteAb