Product Citations: 7

Diabetic wounds have become a global healthcare burden owing to impaired angiogenesis and persistent infections. Extracellular vesicles (EVs) can improve diabetic wounds, though their targeting ability is limited. In this study, we investigated the performance of a novel hydrogel dressing comprised of gelatin methacryloyl, glycoengineered EVs, and polylysine in treating infected diabetic wounds. High-throughput single-cell RNA sequencing (scRNA-seq) and immunofluorescence staining revealed that E-selectin (SELE) levels were higher in diabetic wounds than in non-diabetic wounds. Mesenchymal stromal cells (MSCs) were transfected with a lentivirus containing fucosyltransferase VII (FUT7) and a CD63-P19-Nluc vector to enhance the expression of sialyl Lewis X (sLeX), the ligand of E-selectin, on the surface of EVs (s-EVs) derived from transfected MSCs (s-MSCs). s-EVs can target human umbilical vein endothelial cells (HUVECs) under lipopolysaccharide stimulation and promote the function of stimulated HUVECs in vitro. To promote and sustain the release of s-EVs, we fabricated a gelatin methacryloyl (Gel)/poly-L-lysine methacryloyl (PL)-5 hydrogel with good antibacterial ability, biocompatibility and mechanical properties. In a mouse experiment, s-EV@Gel/PL-5 exhibited excellent angiogenesis and anti-inflammatory abilities and further promoted the healing of infected diabetic wounds. Our findings demonstrated the potential of the s-EV@Gel/PL-5 hydrogel in the clinical treatment of diabetic infectious wounds.
© 2024 The Author(s). Journal of Extracellular Vesicles published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles.

Cell-specific targeting of extracellular vesicles through engineering the glycocalyx.

In Journal of Extracellular Vesicles on 1 December 2022 by Zheng, W., He, R., et al.

Extracellular vesicles (EVs) are promising carriers for the delivery of a variety of chemical and biological drugs. However, their efficacy is limited by the lack of cellular specificity. Available methods to improve the tissue specificity of EVs predominantly rely on surface display of proteins and peptides, largely overlooking the dense glycocalyx that constitutes the outermost layer of EVs. In the present study, we report a reconfigurable glycoengineering strategy that can endogenously display glycans of interest on EV surface. Briefly, EV producer cells are genetically engineered to co-express a glycosylation domain (GD) inserted into the large extracellular loop of CD63 (a well-studied EV scaffold protein) and fucosyltransferase VII (FUT7) or IX (FUT9), so that the engineered EVs display the glycan of interest. Through this strategy, we showcase surface display of two types of glycan ligands, sialyl Lewis X (sLeX) and Lewis X, on EVs and achieve high specificity towards activated endothelial cells and dendritic cells, respectively. Moreover, the endothelial cell-targeting properties of sLeX-EVs were combined with the intrinsic therapeutic effects of mesenchymal stem cells (MSCs), leading to enhanced attenuation of endothelial damage. In summary, this study presents a reconfigurable glycoengineering strategy to produce EVs with strong cellular specificity and highlights the glycocalyx as an exploitable trait for engineering EVs.
© 2022 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles.

Transcriptome and Function of Novel Immunosuppressive Autoreactive Invariant Natural Killer T Cells That Are Absent in Progressive Multiple Sclerosis.

In Neurology® Neuroimmunology Neuroinflammation on 1 November 2021 by Carrion, B., Liu, Y., et al.

The aim of this study was to determine whether natural killer T (NKT) cells, including invariant (i) NKT cells, have clinical value in preventing the progression of multiple sclerosis (MS) by examining the mechanisms by which a distinct self-peptide induces a novel, protective invariant natural killer T cell (iNKT cell) subset.
We performed a transcriptomic and functional analysis of iNKT cells that were reactive to a human collagen type II self-peptide, hCII707-721, measuring differentially induced genes, cytokines, and suppressive capacity.
We report the first transcriptomic profile of human conventional vs novel hCII707-721-reactive iNKT cells. We determined that hCII707-721 induces protective iNKT cells that are found in the blood of healthy individuals but not progressive patients with MS (PMS). By transcriptomic analysis, we observed that hCII707-721 promotes their development and proliferation, favoring the splicing of full-length AKT serine/threonine kinase 1 (AKT1) and effector function of this unique lineage by upregulating tumor necrosis factor (TNF)-related genes. Furthermore, hCII707-721-reactive iNKT cells did not upregulate interferon (IFN)-γ, interleukin (IL)-4, IL-10, IL-13, or IL-17 by RNA-seq or at the protein level, unlike the response to the glycolipid alpha-galactosylceramide. hCII707-721-reactive iNKT cells increased TNFα only at the protein level and suppressed autologous-activated T cells through FAS-FAS ligand (FAS-FASL) and TNFα-TNF receptor I signaling but not TNF receptor II.
Based on their immunomodulatory properties, NKT cells have a potential value in the treatment of autoimmune diseases, such as MS. These significant findings suggest that endogenous peptide ligands can be used to expand iNKT cells, without causing a cytokine storm, constituting a potential immunotherapy for autoimmune conditions, including PMS.
Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  • FC/FACS
  • Immunology and Microbiology

Phenotypic Characterization of SLex+ and CLA+ CD4+ T Cells.

In STAR Protocols on 18 December 2020 by Kuri-Cervantes, L., Pampena, M. B., et al.

Recent advances in high-resolution multiparametric flow cytometry enable ever deeper analysis of human lymphocyte subsets that require rigorous methodology development and optimization. Here, we detail methods to characterize glycosylated Sialyl-LewisX (SLeX)- or cutaneous lymphocyte-associated antigen (CLA)-expressing CD4+ T cells using two separate multiparametric flow cytometry panels enabling the identification of memory subsets, Th subsets, and expression of diverse activation markers and chemokine receptors. The proposed protocol allows optimal resolution of the measured parameters while minimizing background in a 25-parameter experiment. For complete details on the use and execution of this protocol, please refer to Colomb et al. (2020).
© 2020 The Author(s).

  • Homo sapiens (Human)
  • Immunology and Microbiology

Sialyl-LewisX Glycoantigen Is Enriched on Cells with Persistent HIV Transcription during Therapy.

In Cell Reports on 4 August 2020 by Colomb, F., Giron, L. B., et al.

A comprehensive understanding of the phenotype of persistent HIV-infected cells, transcriptionally active and/or transcriptionally inactive, is imperative for developing a cure. The relevance of cell-surface glycosylation to HIV persistence has never been explored. We characterize the relationship between cell-surface glycomic signatures and persistent HIV transcription in vivo. We find that the cell surface of CD4+ T cells actively transcribing HIV, despite suppressive therapy, harbors high levels of fucosylated carbohydrate ligands, including the cell extravasation mediator Sialyl-LewisX (SLeX), compared with HIV-infected transcriptionally inactive cells. These high levels of SLeX are induced by HIV transcription in vitro and are maintained after therapy in vivo. Cells with high-SLeX are enriched with markers associated with HIV susceptibility, signaling pathways that drive HIV transcription, and pathways involved in leukocyte extravasation. We describe a glycomic feature of HIV-infected transcriptionally active cells that not only differentiates them from their transcriptionally inactive counterparts but also may affect their trafficking abilities.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Biochemistry and Molecular biology
View this product on CiteAb