Product Citations: 2

The role of GCNT1 mediated O-glycosylation in aggressive prostate cancer.

In Scientific Reports on 9 October 2023 by Hodgson, K., Orozco-Moreno, M., et al.

Prostate cancer is the most common cancer in men and a major cause of cancer related deaths worldwide. Nearly all affected men develop resistance to current therapies and there is an urgent need to develop new treatments for advanced disease. Aberrant glycosylation is a common feature of cancer cells implicated in all of the hallmarks of cancer. A major driver of aberrant glycosylation in cancer is the altered expression of glycosylation enzymes. Here, we show that GCNT1, an enzyme that plays an essential role in the formation of core 2 branched O-glycans and is crucial to the final definition of O-glycan structure, is upregulated in aggressive prostate cancer. Using in vitro and in vivo models, we show GCNT1 promotes the growth of prostate tumours and can modify the glycome of prostate cancer cells, including upregulation of core 2 O-glycans and modifying the O-glycosylation of secreted glycoproteins. Furthermore, using RNA sequencing, we find upregulation of GCNT1 in prostate cancer cells can alter oncogenic gene expression pathways important in tumour growth and metastasis. Our study highlights the important role of aberrant O-glycosylation in prostate cancer progression and provides novel insights regarding the mechanisms involved.
© 2023. Springer Nature Limited.

  • ICC-IF
  • Cancer Research

Fluorometric Quantification of Single-Cell Velocities to Investigate Cancer Metastasis.

In Cell Systems on 28 November 2018 by Edwards, E. E., Birmingham, K. G., et al.

Hematogenous metastasis is a multistep, selectin-regulated process whose mechanisms remain poorly understood. To investigate this biological pathway of cancer dissemination and better understand circulating cancer cells, we developed a high-throughput methodology that integrates organ-on-chip-like microfluidic and photoconvertible protein technologies. Our approach can ascribe single-cell velocity as a traceable cell property for off-chip analysis of the direct relationships between cell molecular profiles and adhesive phenotypes in the context of physiologically relevant fluid flow. We interrogate how natively expressed selectin ligands relate to colon cancer cell rolling frequencies and velocities and provide context for previously reported disparities in in vitro and in vivo models of selectin-mediated adhesion and metastasis. This integrated methodology represents a versatile approach for the development of anti-metastatic therapeutics as well as to generate and test mechanistic hypotheses regarding spatiotemporal processes that occur over timescales of seconds to hours with single-cell resolution.
Copyright © 2018 Elsevier Inc. All rights reserved.

  • Homo sapiens (Human)
  • Cancer Research
View this product on CiteAb