Product Citations: 2

Multiparametric Flow Cytometry-Based Immunophenotyping of Mouse Liver Immune Cells.

In Methods and Protocols on 3 September 2022 by Vanekova, L., Polidarova, M. P., et al.

The liver is a complex organ that governs many types of metabolisms, including energy metabolism and other cellular processes. The liver also plays a crucial role in important functions in immunity, and the activity of liver tissue-associated immunity affects the outcome of many liver pathologies. A thorough characterization of the liver immune microenvironment may contribute to a better understanding of immune signaling, the mechanisms of specific immune responses, and even to improved predictions about therapy outcomes. In this paper, we present an optimized, simple, and rapid protocol to characterize the liver-associated immune cell milieu. We believe that the most suitable technique for obtaining a complex immune cell suspension and for removing contaminating blood cells is to perform mouse liver perfusion, using only phosphate buffer saline. Combining an enzymatic digestion and a mechanical dissociation of liver tissue, followed by cell purification, improves downstream applications. This combination is an essential prerequisite for immune cell determination and characterization. We then demonstrate a flow cytometry-based multiparametric immunophenotyping along with a gating strategy to detect and quantify liver endothelial cells, T cells (helper and cytotoxic), B cells, NK cells, NKT cells, neutrophils, monocytes (subsets included), dendritic cells (subsets included), macrophages and Kupffer cells.

  • Immunology and Microbiology

Nur77 deletion impairs muscle growth during developmental myogenesis and muscle regeneration in mice.

In PLoS ONE on 9 February 2017 by Cortez-Toledo, O., Schnair, C., et al.

Muscle atrophy is a prevalent condition in illness and aging. Identifying novel pathways that control muscle mass may lead to therapeutic advancement. We previously identified Nur77 as a transcriptional regulator of glycolysis in skeletal muscle. More recently, we showed that Nur77 expression also controls myofiber size in mice. It was unknown, however, whether Nur77's regulation of muscle size begins during developmental myogenesis or only in adulthood. To determine the importance of Nur77 throughout muscle growth, we examined myofiber size at E18.5, 3 weeks postnatal age, and in young adult mice. Using the global Nur77-/- mice, we showed that Nur77 deficiency reduced myofiber size as early as E18.5. The reduction in myofiber size became more pronounced by 3 weeks of age. We observed comparable reduction in myofiber size in young myofiber-specific Nur77-knockout mice. These findings suggest that Nur77's effect on muscle growth is intrinsic to its expression in differentiating myofibers, and not dependent on its expression in myogenic stem cells. To determine the importance of Nur77 expression in muscle accretion in mature mice, we generated an inducible-, muscle-specific, Nur77-deficient mouse model. We demonstrated that tamoxifen-induced deletion of Nur77 in 3-month-old mice reduced myofiber size. This change was accompanied by increased activity of Smad2 and FoxO3, two negative regulators of muscle mass. The role of Nur77 in muscle growth was further elaborated in the cardiotoxin-induced muscle regeneration model. Compared to wildtype mice, regenerated myofibers were smaller in Nur77-/- mice. However, when normalized to saline-injected muscle, the recovery of sarcoplasmic area was comparable between Nur77-/- and wildtype mice. These findings suggest that Nur77 deficiency compromises myofiber growth, but not the regenerative capacity of myogenic progenitor cells. Collectively, the findings presented here demonstrate Nur77 as an important regulator of muscle growth both during prenatal and postnatal myogenesis.

  • FC/FACS
  • Mus musculus (House mouse)
  • Stem Cells and Developmental Biology
View this product on CiteAb