Product Citations: 10

Pre-clinical use of humanized mice transplanted with CD34+ hematopoietic stem and progenitor cells (HSPCs) is limited by insufficient engraftment with adult non-mobilized HSPCs. Here, we developed a novel immunodeficient mice based on NOD-SCID-Il2γc-/- (NSG) mice to support long-term engraftment with human adult HSPCs. As both Flt3L and IL-6 are critical for many aspects of hematopoiesis, we knock-out mouse Flt3 and knock-in human IL6 gene. The resulting mice showed an increase in the availability of mouse Flt3L to human cells and a dose-dependent production of human IL-6 upon activation. Upon transplantation with low number of human HSPCs from adult bone marrow, these humanized mice demonstrated a significantly higher engraftment with multilineage differentiation of human lymphoid and myeloid cells, and tissue colonization at one year after adult HSPC transplant. Thus, these mice enable studies of human hematopoiesis and tissue colonization over time and may facilitate building autologous models for immuno-oncology studies.
© 2024 The Author(s).

  • Mus musculus (House mouse)

Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition).

In European Journal of Immunology on 1 December 2021 by Cossarizza, A., Chang, H. D., et al.

The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
© 2021 Wiley-VCH GmbH.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Dual targeting of lymphocyte homing and retention through α4β7 and αEβ7 inhibition in inflammatory bowel disease.

In Cell Reports Medicine on 17 August 2021 by Dai, B., Hackney, J. A., et al.

Anti-integrins are therapeutically effective for inflammatory bowel disease, yet the relative contribution of α4β7 and αEβ7 to gut lymphocyte trafficking is not fully elucidated. Here, we evaluate the effect of α4β7 and αEβ7 blockade using a combination of murine models of gut trafficking and longitudinal gene expression analysis in etrolizumab-treated patients with Crohn's disease (CD). Dual blockade of α4β7 and αEβ7 reduces CD8+ T cell accumulation in the gut to a greater extent than blockade of either integrin alone. Anti-αEβ7 reduces epithelial:T cell interactions and promotes egress of activated T cells from the mucosa into lymphatics. Inflammatory gene expression is greater in human intestinal αEβ7+ T cells. Etrolizumab-treated patients with CD display a treatment-specific reduction in inflammatory and cytotoxic intraepithelial lymphocytes (IEL) genes. Concurrent blockade of α4β7 and αEβ7 promotes reduction of cytotoxic IELs and inflammatory T cells in the gut mucosa through a stepwise inhibition of intestinal tissue entry and retention.© 2021 The Authors.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. The major bacterial cause of COPD exacerbations is non-typeable Haemophilus influenzae (NTHi). 25 to over 80% of cases are associated with NTHi. This susceptibility to infection involves a defective production of interleukin (IL)-22 which plays an important role in mucosal defense. Prophylactic administration of flagellin, a Toll-like receptor 5 (TLR5) agonist, protects healthy mice against respiratory pathogenic bacteria. We hypothesized that TLR5-mediated stimulation of lung immunity might prevent COPD exacerbations. Mice chronically exposed to cigarette smoke (CS), which presented COPD symptoms, were infected with NTHi and intraperitoneally treated with recombinant flagellin following a prophylactic or therapeutic protocol. Compared with control, cigarette smoke-exposed mice treated with flagellin showed a lower bacterial load in the airways, the lungs and the blood. This protection was associated with an early neutrophilia, a lower production of pro-inflammatory cytokines and an increased IL-22 production. Flagellin treatment decreased the recruitment of inflammatory cells and the lung damages related to exacerbation. Morover, the protective effect of flagellin against NTHi was altered by treatment with anti-IL-22 blocking antibodies in cigarette smoke-exposed mice and in Il22-/- mice. The effect of flagellin treatment did not implicated the anti-bacterial peptides calgranulins and defensin-β2. This study shows that stimulation of innate immunity by a TLR5 ligand is a potent antibacterial treatment in CS-exposed mice, suggesting innovative therapeutic strategies against acute exacerbation in COPD.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Circulating memory CD8+ T cells are limited in forming CD103+ tissue-resident memory T cells at mucosal sites after reinfection.

In European Journal of Immunology on 1 January 2021 by Behr, F. M., Beumer-Chuwonpad, A., et al.

Tissue-resident memory CD8+ T cells (TRM ) localize to barrier tissues and mediate local protection against reinvading pathogens. Circulating central memory (TCM ) and effector memory CD8+ T cells (TEM ) also contribute to tissue recall responses, but their potential to form mucosal TRM remains unclear. Here, we employed adoptive transfer and lymphocytic choriomeningitis virus reinfection models to specifically assess secondary responses of TCM and TEM at mucosal sites. Donor TCM and TEM exhibited robust systemic recall responses, but only limited accumulation in the small intestine, consistent with reduced expression of tissue-homing and -retention molecules. Murine and human circulating memory T cells also exhibited limited CD103 upregulation following TGF-β stimulation. Upon pathogen clearance, TCM and TEM readily gave rise to secondary TEM . TCM also formed secondary central memory in lymphoid tissues and TRM in internal tissues, for example, the liver. Both TCM and TEM failed to substantially contribute to resident mucosal memory in the small intestine, while activated intestinal TRM , but not liver TRM , efficiently reformed CD103+ TRM . Our findings demonstrate that circulating TCM and TEM are limited in generating mucosal TRM upon reinfection. This may pose important implications on cell therapy and vaccination strategies employing memory CD8+ T cells for protection at mucosal sites.
© 2020 Wiley-VCH GmbH.

  • Immunology and Microbiology
View this product on CiteAb