Product Citations: 3

Prostate cancer (PCa) is the second most common cancer among men and the fifth leading cause of cancer death. Circulating tumor cell (CTC) enumeration and characterisation in PCa has been shown to provide valuable information on prognosis of disease, therapy management and detection of resistance. Here, Cellsway's microfluidic platform for high-throughput enrichment of intact CTC populations was used to isolate CTCs from the blood of 20 localised PCa patients and 10 healthy donor samples to evaluate the clinical performance of the technology. To enumerate and characterise CTCs, a multi-parameter flow cytometry analysis was performed on the enriched CTC suspension using CTC-specific biomarkers. CTCs were detected in 17 of 20 patient samples, which corresponds to 85% CTC positivity. The median CTC count per 7.5 ml blood was 2 (1-9). In 80% of patients (n = 16), the number of CTCs ranged from 1 to 5, and in 5% of patients (n = 1) the number of CTCs was above 5. No CTCs were observed in the blood samples of 10 healthy volunteers, demonstrating the high specificity and low risk of false positives of the technology.
Copyright: © 2024 Kilercik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • FC/FACS
  • Cancer Research

Premature ovarian failure (POF) has a profound impact on female reproductive and psychological health. In recent years, the transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) has demonstrated unprecedented potential in the treatment of POF. However, the heterogeneity of human UC-MSCs remains a challenge for their large-scale clinical application. Therefore, it is imperative to identify specific subpopulations within UC-MSCs that possess the capability to improve ovarian function, with the aim of reducing the uncertainty arising from the heterogeneity while achieving more effective treatment of POF.
10 × Genomics was performed to investigate the heterogeneity of human UC-MSCs. We used LRP1 as a marker and distinguished the potential therapeutic subpopulation by flow cytometry, and determined its secretory functions. Unsorted UC-MSCs, LRP1high and LRP1low subpopulation was transplanted under the ovarian capsules of aged mice and CTX-induced POF mice, and therapeutic effects was evaluated by assessing hormone levels, estrous cycles, follicle counts, and embryo numbers. RNA sequencing on mouse oocytes and granulosa cells after transplantation was performed to explore the mechanism of LRP1high subpopulation on mouse oocytes and granulosa cells.
We identified three distinct functional subtypes, including mesenchymal stem cells, multilymphoid progenitor cells and trophoblasts. Additionally, we identified the LRP1high subpopulation, which improved ovarian function in aged and POF mice. We elucidated the unique secretory functions of the LRP1high subpopulation, capable of secreting various chemokines, cytokines, and growth factors. Furthermore, LRP1 plays a crucial role in regulating the ovarian microenvironment, including tissue repair and extracellular matrix remodeling. Consistent with its functions, the transcriptomes of oocytes and granulosa cells after transplantation revealed that the LRP1high subpopulation improves ovarian function by modulating the extracellular matrix of oocytes, NAD metabolism, and mitochondrial function in granulosa cells.
Through exploration of the heterogeneity of UC-MSCs, we identified the LRP1high subpopulation capable of improving ovarian function in aged and POF mice by secreting various factors and remodeling the extracellular matrix. This study provides new insights into the targeted exploration of human UC-MSCs in the precise treatment of POF.
© 2024. The Author(s).

  • FC/FACS
  • Stem Cells and Developmental Biology

Staphylococcus aureus Internalized by Skin Keratinocytes Evade Antibiotic Killing.

In Frontiers in Microbiology on 15 October 2019 by Al Kindi, A., Alkahtani, A. M., et al.

Staphylococcus aureus causes the majority of skin and soft tissue infections. Half of patients treated for primary skin infections suffer recurrences within 6 months despite appropriate antibiotic sensitivities and infection control measures. We investigated whether S. aureus internalized by human skin keratinocytes are effectively eradicated by standard anti-staphylococcal antibiotics. S. aureus, but not S. epidermidis, were internalized and survive within keratinocytes without inducing cytotoxicity or releasing the IL-33 danger signal. Except for rifampicin, anti-staphylococcal antibiotics in regular clinical use, including flucloxacillin, teicoplanin, clindamycin, and linezolid, did not kill internalized S. aureus, even at 20-fold their standard minimal inhibitory concentration. We conclude that internalization of S. aureus by human skin keratinocytes allows the bacteria to evade killing by most anti-staphylococcal antibiotics. Antimicrobial strategies, including antibiotic combinations better able to penetrate into mammalian cells are required if intracellular S. aureus are to be effectively eradicated and recurrent infections prevented.
Copyright © 2019 Al Kindi, Alkahtani, Nalubega, El-Chami, O’Neill, Arkwright and Pennock.

  • Immunology and Microbiology
View this product on CiteAb