Product Citations: 3

Longitudinal analysis of peripheral immune cells in patients with multiple sclerosis treated with anti-CD20 therapy.

In Annals of Clinical and Translational Neurology on 1 October 2024 by Waede, M., Voss, L. F., et al.

Anti-CD20 therapy is a highly effective treatment for multiple sclerosis (MS). In this study, we investigated MS-related changes in peripheral blood mononuclear cell (PBMC) subsets compared to healthy controls and longitudinal changes related to the treatment.
Multicolor spectral flow cytometry analysis was performed on 78 samples to characterize disease- and treatment-related PBMC clusters. Blood samples from MS patients were collected at baseline and up to 8 months post-treatment, with three collection points after treatment initiation. Unsupervised clustering tools and manual gating were applied to identify subclusters of interest and quantify changes.
B cells were depleted from the periphery after anti-CD20 treatment as expected, and we observed an isolated acute, transitory drop in the proportion of natural killer (NK) and NKT cells among the main populations of PBMC (P = 0.03, P = 0.004). Major affected PBMC subpopulations were cytotoxic immune cells (NK, NKT, and CD8+ T cells), and we observed a higher proportion of cytotoxic cells with reduced brain-homing ability and a higher regulatory function as a long-term anti-CD20-related effect. Additionally, anti-CD20 therapy altered distributions of memory CD8+ T cells and reduced exhaustion markers in both CD4+ and CD8+ T cells.
The findings of this study elucidate phenotypic clusters of NK and CD8+ T cells, which have previously been underexplored in the context of anti-CD20 therapy. Phenotypic modifications towards a more regulatory and controlled phenotype suggest that these subpopulations may play a critical and previously unrecognized role in mediating the therapeutic efficacy of anti-CD20 treatments.
© 2024 The Author(s). Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

  • Immunology and Microbiology

Oral cholera vaccination promotes homing of IgA+ memory B cells to the large intestine and the respiratory tract.

In Mucosal Immunology on 1 July 2018 by van Splunter, M., Van Hoffen, E., et al.

Oral cholera vaccination is used to induce immune responses in the intestines to protect against cholera infection. However, oral vaccination may also affect immune responses in other mucosal tissues. To study this, tissue-specific homing potential and kinetics of B-cell responses were characterized after oral cholera vaccination. Healthy adult volunteers received two doses of Dukoral® and blood, saliva, nasal wash, and fecal samples were collected over time to detect vaccine-specific antibodies. Additionally, homing potential of lymphocytes to small intestine, colon, airways, skin, and periphery was measured by expression of Integrin β1 and β7, CCR9, CCR10, CCR7, and CLA. After vaccination, antibody responses to cholera toxin B (CTB) and Dukoral® were detected in serum and nasal wash. CTB-specific memory B cells in peripheral blood and tissue homing profiles of memory B cells peaked at day 18. IgA+ memory B cells expressed markers that enable homing to the airways and colon, while IgA- memory B cells primarily expressed small-intestine-homing markers. These data show that oral cholera vaccination has a differential effect on immune responses in various mucosal sites, including the respiratory tract.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Many mediators and regulators of extravasation by bona fide human memory-phenotype T cells remain undefined. Mucosal-associated invariant T (MAIT) cells are innate-like, antibacterial cells that we found excelled at crossing inflamed endothelium. They displayed abundant selectin ligands, with high expression of FUT7 and ST3GAL4, and expressed CCR6, CCR5, and CCR2, which played non-redundant roles in trafficking on activated endothelial cells. MAIT cells selectively expressed CCAAT/enhancer-binding protein delta (C/EBPδ). Knockdown of C/EBPδ diminished expression of FUT7, ST3GAL4 and CCR6, decreasing MAIT cell rolling and arrest, and consequently the cells' ability to cross an endothelial monolayer in vitro and extravasate in mice. Nonetheless, knockdown of C/EBPδ did not affect CCR2, which was important for the step of transendothelial migration. Thus, MAIT cells demonstrate a program for extravasastion that includes, in part, C/EBPδ and C/EBPδ-regulated genes, and that could be used to enhance, or targeted to inhibit T cell recruitment into inflamed tissue.

View this product on CiteAb