Product Citations: 12

Neoadjuvant triplet immune checkpoint blockade in newly diagnosed glioblastoma.

In Nature Medicine on 1 May 2025 by Long, G. V., Shklovskaya, E., et al.

Glioblastoma (GBM) is an aggressive primary adult brain tumor that rapidly recurs after standard-of-care treatments, including surgery, chemotherapy and radiotherapy. While immune checkpoint inhibitor therapies have transformed outcomes in many tumor types, particularly when used neoadjuvantly or as a first-line treatment, including in melanoma brain metastases, they have shown limited efficacy in patients with resected or recurrent GBM. The lack of efficacy has been attributed to the scarcity of tumor-infiltrating lymphocytes (TILs), an immunosuppressive tumor microenvironment and low tumor mutation burden typical of GBM tumors, plus exclusion of large molecules from the brain parenchyma. We hypothesized that upfront neoadjuvant combination immunotherapy, administered with disease in situ, could induce a stronger immune response than treatment given after resection or after recurrence. Here, we present a case of newly diagnosed IDH-wild-type, MGMT promoter unmethylated GBM, treated with a single dose of neoadjuvant triplet immunotherapy (anti-programmed cell death protein 1 plus anti-cytotoxic T-lymphocyte protein 4 plus anti-lymphocyte-activation gene 3) followed by maximal safe resection 12 days later. The anti-programmed cell death protein 1 drug was bound to TILs in the resected GBM and there was marked TIL infiltration and activation compared with the baseline biopsy. After 17 months, there is no definitive sign of recurrence. If used first line, before safe maximal resection, checkpoint inhibitors are capable of immune activation in GBM and may induce a response. A clinical trial of first-line neoadjuvant combination checkpoint inhibitor therapy in newly diagnosed GBM is planned (GIANT; trial registration no. NCT06816927 ).
© 2025. The Author(s).

  • Immunology and Microbiology

Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma.

In Nature Communications on 8 September 2022 by Gyurdieva, A., Zajic, S., et al.

Autologous T cells transduced to express a high affinity T-cell receptor specific to NY-ESO-1 (letetresgene autoleucel, lete-cel) show promise in the treatment of metastatic synovial sarcoma, with 50% overall response rate. The efficacy of lete-cel treatment in 45 synovial sarcoma patients (NCT01343043) has been previously reported, however, biomarkers predictive of response and resistance remain to be better defined. This post-hoc analysis identifies associations of response to lete-cel with lymphodepleting chemotherapy regimen (LDR), product attributes, cell expansion, cytokines, and tumor gene expression. Responders have higher IL-15 levels pre-infusion (p = 0.011) and receive a higher number of transduced effector memory (CD45RA- CCR7-) CD8 + cells per kg (p = 0.039). Post-infusion, responders have increased IFNγ, IL-6, and peak cell expansion (p < 0.01, p < 0.01, and p = 0.016, respectively). Analysis of tumor samples post-treatment illustrates lete-cel infiltration and a decrease in expression of macrophage genes, suggesting remodeling of the tumor microenvironment. Here we report potential predictive and pharmacodynamic markers of lete-cel response that may inform LDR, cell dose, and strategies to enhance anticancer efficacy.
© 2022. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

  • FC/FACS
  • Immunology and Microbiology

Coronavirus disease 2019 (COVID-19) convalescents living in regions with low vaccination rates rely on post-infection immunity for protection against re-infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluate humoral and T cell immunity against five variants of concern (VOCs) in mild-COVID-19 convalescents at 12 months after infection with ancestral virus. In this cohort, ancestral, receptor-binding domain (RBD)-specific antibody and circulating memory B cell levels are conserved in most individuals, and yet serum neutralization against live B.1.1.529 (Omicron) is completely abrogated and significantly reduced for other VOCs. Likewise, ancestral SARS-CoV-2-specific memory T cell frequencies are maintained in >50% of convalescents, but the cytokine response in these cells to mutated spike epitopes corresponding to B.1.1.529 and B.1.351 (Beta) VOCs were impaired. These results indicate that increased antigen variability in VOCs impairs humoral and spike-specific T cell immunity post-infection, strongly suggesting that COVID-19 convalescents are vulnerable and at risk of re-infection with VOCs, thus stressing the importance of vaccination programs.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

  • COVID-19
  • Immunology and Microbiology

Systematic Evaluation of the Immune Environment of Small Intestinal Neuroendocrine Tumors.

In Clinical Cancer Research on 13 June 2022 by Vesely, C., Wong, Y. N. S., et al.

The immune tumor microenvironment and the potential therapeutic opportunities for immunotherapy in small intestinal neuroendocrine tumors (siNET) have not been fully defined.
Herein, we studied 40 patients with primary and synchronous metastatic siNETs, and matched blood and normal tissue obtained during surgery. We interrogated the immune checkpoint landscape using multi-parametric flow cytometry. In addition, matched FFPE tissue was obtained for multi-parametric IHC to determine the relative abundance and distribution of T-cell infiltrate. Tumor mutational burden (TMB) was also assessed and correlated with immune infiltration.
Effector tumor-infiltrating lymphocytes (TIL) had a higher expression of PD-1 in the tumor microenvironment compared with the periphery. In addition, CD8+ TILs had a significantly higher co-expression of PD-1/ICOS and PD-1/CTLA-4 (cytotoxic T lymphocyte antigen-4) and higher levels of PD-1 expression compared with normal tissue. IHC revealed that the majority of cases have ≤10% intra-tumoral T cells but a higher number of peri-tumoral T cells, demonstrating an "exclusion" phenotype. Finally, we confirmed that siNETs have a low TMB compared with other tumor types in the TCGA database but did not find a correlation between TMB and CD8/Treg ratio.
Taken together, these results suggest that a combination therapy approach will be required to enhance the immune response, using PD-1 as a checkpoint immunomodulator backbone in combination with other checkpoint targeting molecules (CTLA-4 or ICOS), or with drugs targeting other pathways to recruit "excluded" T cells into the tumor microenvironment to treat patients with siNETs.
©2022 The Authors; Published by the American Association for Cancer Research.

  • Cancer Research
  • Endocrinology and Physiology
  • Immunology and Microbiology

Why multisystem inflammatory syndrome in children (MIS-C) develops after SARS-CoV-2 infection in a subset of children is unknown. We hypothesized that aberrant virus-specific T cell responses contribute to MIS-C pathogenesis. We quantified SARS-CoV-2-reactive T cells, serologic responses against major viral proteins, and cytokine responses from plasma and peripheral blood mononuclear cells in children with convalescent COVID-19, in children with acute MIS-C, and in healthy controls. Children with MIS-C had significantly lower virus-specific CD4+ and CD8+ T cell responses to major SARS-CoV-2 antigens compared with children convalescing from COVID-19. Furthermore, T cell responses in participants with MIS-C were similar to or lower than those in healthy controls. Serologic responses against spike receptor binding domain (RBD), full-length spike, and nucleocapsid were similar among convalescent COVID-19 and MIS-C, suggesting functional B cell responses. Cytokine profiling demonstrated predominant Th1 polarization of CD4+ T cells from children with convalescent COVID-19 and MIS-C, although cytokine production was reduced in MIS-C. Our findings support a role for constrained induction of anti-SARS-CoV-2-specific T cells in the pathogenesis of MIS-C.

  • COVID-19
  • Immunology and Microbiology
View this product on CiteAb