Product Citations: 5

Checkpoint inhibition (CPI) therapy and adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TIL-based ACT) are the two most effective immunotherapies for the treatment of metastatic melanoma. While CPI has been the dominating therapy in the past decade, TIL-based ACT is beneficial for individuals even after progression on previous immunotherapies. Given that notable differences in response have been made when used as a subsequent treatment, we investigated how the qualities of TILs changed when the ex vivo microenvironment of intact tumor fragments were modulated with checkpoint inhibitors targeting programmed death receptor 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). Initially, we show that unmodified TILs from CPI-resistant individuals can be produced, are overwhelmingly terminally differentiated, and are capable of responding to tumor. We then investigate these properties in ex vivo checkpoint modulated TILs finding that that they retain these qualities. Lastly, we confirmed the specificity of the TILs to the highest responding tumor antigens, and identified this reactivity resides largely in CD39+CD69+ terminally differentiated populations. Overall, we found that anti-PD-1 will alter the proliferative capacity while anti-CTLA4 will influence breadth of antigen specificity.
Copyright © 2023 Hulen, Friese, Kristensen, Granhøj, Borch, Peeters, Donia, Andersen, Hadrup, Svane and Met.

  • Cancer Research
  • Immunology and Microbiology

Natural and Induced Tolerance to Hymenoptera Venom: A Single Mechanism?

In Toxins on 22 June 2022 by Navas, A., Ruiz-Leon, B., et al.

Inducing tolerance in Hymenoptera-allergic patients, bee venom immunotherapy (BVIT) is a widely accepted method to treat severe allergy to bee stings. In order to increase the existing knowledge on the underlying immunological mechanisms and look for possible biomarkers predictive of efficacy, a group of 20 bee-venom-allergic patients (AG) were thoroughly examined during their first year of BVIT. In addition, the results of treated patients with those of an untreated group of 20 tolerant beekeepers (TG) who had previously shown a firm suppressor-regulatory profile were compared. Tolerance in AG patients was invariably associated with a significant regulatory response characterised by the expansion of Helios- subpopulation and increased IL-10, specific IgG4 (sIgG4), and kynurenine levels. Although specific IgE (sIgE) levels increased transiently, surprisingly, the T helper type 2 (Th2) population and IL-4 levels rose significantly after one year of immunotherapy. Thus, the picture of two parallel phenomena emerges: a tolerogenic response and an allergenic one. Comparing these results with those obtained from the TG, different immunological mechanisms appear to govern natural and acquired tolerance to immunotherapy. Of particular interest, the kynurenine levels and T regulatory (Treg) Helios- population could be proposed as new biomarkers of response to BVIT.

Expansion of tumor-infiltrating lymphocytes with substantial stem cell properties from vulvar cancer

Preprint on Authorea Preprints on 13 September 2021 by al, T. Y. e. & Liu, Y.

Tumor-infiltrating lymphocyte (TIL) therapy has been clinically proved as a promising therapeutic approach for patients with solid tumor. TIL therapy could effectively control tumor growth in cervical cancer as indicated by a phase 2 pivotal trial with an objective response rate of 44.4%. Vulvar cancer is believed to share a similar biological and immunological phenotype with cervical cancer. However, the therapeutic potential of TIL in vulvar cancer remains to be explored. In this study, we described a manufacturing procedure that can expand clinical-scale TILs from both vulvar cancer and cervical cancer with a high success rate. Characterization of the phenotype of TIL populations showed that TILs from vulvar cancer are prone to maintaining a higher percentage of progenitor-like phenotype and have stronger tumor-killing capacity compared to TILs from cervical cancer. TCR clonality analysis indicated that all TIL samples have more enriched TCR clones than PBMC, which might be expanded during anti-tumor responses and tend to be patient specific. Thus, our study provides a feasible method of TIL preparation from and a potential new therapeutic strategy for vulvar cancer patients.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research
  • Stem Cells and Developmental Biology

Increased regulatory B cells are involved in immune evasion in patients with gastric cancer.

In Scientific Reports on 11 September 2019 by Murakami, Y., Saito, H., et al.

Accumulating evidence has indicated that immune regulatory cells are involved in the establishment of tumoral immune evasion. However, the role of regulatory B cells (Bregs) in this remains unclear. Here, we identified a role for Bregs in immune evasion in gastric cancer (GC) patients. The frequency of peripheral Bregs was significantly higher in GC patients than in healthy controls (P = 0.0023). Moreover, the frequency of CD19+CD24hiCD27+ B cells in GC tissue was significantly higher than in peripheral blood and healthy gastric tissue. Carboxyfluorescein succinimidyl ester labeling revealed that CD19+CD24hiCD27+ B cells could suppress the proliferation of autologous CD4+ T cells. Moreover, CD19+CD24hiCD27+ B cells inhibited the production of interferon-gamma by CD4+ T cells. Double staining immunohistochemistry of interleukin-10 and CD19 revealed 5-year overall survival rates of 65.4% and 13.3% in BregLow and BregHigh groups, respectively (P < 0.0001). Multivariate analysis indicated that the frequency of Bregs was an independent prognostic indicator in GC patients. Taken together, our results show the existence of Bregs in GC tissue, and indicate that they are significantly correlated with the prognosis of GC patients.

  • Cancer Research
  • Immunology and Microbiology

Pegylated-interferon alpha (PegINFα) treatment of patients with polycythemia vera (PV) and essential thrombocythemia (ET) has resulted in long-term clinical response, decreased JAK2V617F allelic burden and restoration of polyclonal hematopoiesis. The mechanisms of the beneficial effects of PegINFα are not clear, but available evidence suggests direct suppression of JAK2-mutated clone, induction of dormant stem cells to proliferation, and augmentation of an immune effect against PV and ET clones.
We analyzed the phenotype and frequency of peripheral blood lymphocytes (PBL) from PegINFα treated patients and compared them to patients treated with hydroxyurea (HU). Samples collected at various time points before and during treatment were analyzed using multicolor flow cytometry.
We found that PegINFα increased the frequency of peripheral blood CD4+ Foxp3+ regulatory T cells (Treg). Highly suppressive Treg, characterized by co-expression of CD39 and HLA-DR, were also increased in PBL from PegINFα treated patients. We observed an augmentation of cycling CD8+ T cells, NK cells, and of poorly activated CD38+CD8+ T cells. Our results also suggest that PegINFα increased the frequency of PD-1+ CD4+ helper cells and PD-1+ CD4+ Foxp3+ Treg cells. None of these changes were present in HU treated patients. We analyzed the correlation between changes in different T cell populations in the peripheral blood with the changes in JAK2V617F allelic burden in clonal granulocytes. Augmentation of Ki-67+ Treg, HLA-DR+ CD39+ Treg, Helios+ Treg and HLA-DR+ CD38+ CD8+ T cells correlated with an increase in JAK2V617F allelic burden. We also found a positive correlation between PD-1+ Treg and JAK2V617F allelic burden; however, the number of available patients was small (n = 7).
We report marked changes in frequencies of PBL subsets after PegINFα treatment, suggesting an immunomodulatory effect by PegINFα. Generation of a more suppressive immune response, as measured by an increase in highly suppressive Treg and poorly activated CD8+ T cells, correlated with a poor molecular response. In this study, we have not identified changes in the PBL that would indicate the presence of an effective anti-tumor response.Trial registration NCT01259856, December 7. 2010 and NCT01259817, December 6. 2010, Grant #1P01CA108671-O1A2, July 17. 2006, Sponsor: MPDRC/NIH, NCI-2012-00269, January 12. 2011 and NCI-2012-00268, January 12. 2011.

  • FC/FACS
  • Homo sapiens (Human)
  • Cardiovascular biology
View this product on CiteAb