Product Citations: 14

The continued evolution of SARS-CoV-2 underscores the need to understand qualitative aspects of the humoral immune response elicited by spike immunization. Here, we combine monoclonal antibody (mAb) isolation with deep B cell receptor (BCR) repertoire sequencing of rhesus macaques immunized with prefusion-stabilized spike glycoprotein. Longitudinal tracing of spike-sorted B cell lineages in multiple immune compartments demonstrates increasing somatic hypermutation and broad dissemination of vaccine-elicited B cells in draining and non-draining lymphoid compartments, including the bone marrow, spleen and, most notably, periaortic lymph nodes. Phylogenetic analysis of spike-specific monoclonal antibody lineages identified through deep repertoire sequencing delineates extensive intra-clonal diversification that shaped neutralizing activity. Structural analysis of the spike in complex with a broadly neutralizing mAb provides a molecular basis for the observed differences in neutralization breadth between clonally related antibodies. Our findings highlight that immunization leads to extensive intra-clonal B cell evolution where members of the same lineage can both retain the original epitope specificity and evolve to recognize additional spike variants not previously encountered.
© 2024. The Author(s).

  • FC/FACS
  • Macaca mulatta (Rhesus Monkey)
  • COVID-19

Refined analytical pipeline for the pharmacodynamic assessment of T-cell responses to vaccine antigens.

In Frontiers in Immunology on 9 May 2024 by Pavlidis, M. A., Viborg, N., et al.

Pharmacodynamic assessment of T-cell-based cancer immunotherapies often focus on detecting rare circulating T-cell populations. The therapy-induced immune cells in blood-derived clinical samples are often present in very low frequencies and with the currently available T-cell analytical assays, amplification of the cells of interest prior to analysis is often required. Current approaches aiming to enrich antigen-specific T cells from human Peripheral Blood Mononuclear Cells (PBMCs) depend on in vitro culturing in presence of their cognate peptides and cytokines. In the present work, we improved a standard, publicly available protocol for T-cell immune analyses based on the in vitro expansion of T cells. We used PBMCs from healthy subjects and well-described viral antigens as a model system for optimizing the experimental procedures and conditions. Using the standard protocol, we first demonstrated significant enrichment of antigen-specific T cells, even when their starting frequency ex vivo was low. Importantly, this amplification occurred with high specificity, with no or neglectable enrichment of irrelevant T-cell clones being observed in the cultures. Testing of modified culturing timelines suggested that the protocol can be adjusted accordingly to allow for greater cell yield with strong preservation of the functionality of antigen-specific T cells. Overall, our work has led to the refinement of a standard protocol for in vitro stimulation of antigen-specific T cells and highlighted its reliability and reproducibility. We envision that the optimized protocol could be applied for longitudinal monitoring of rare blood-circulating T cells in scenarios with limited sample material.
Copyright © 2024 Pavlidis, Viborg, Lausen, Rønø and Kleine-Kohlbrecher.

  • Homo sapiens (Human)
  • Immunology and Microbiology

In Vitro Generation of Human Cross-Presenting Type 1 Conventional Dendritic Cells (cDC1s) and Plasmacytoid Dendritic Cells (pDCs).

In Methods in Molecular Biology (Clifton, N.J.) on 12 March 2023 by Luo, X., Balan, S., et al.

Dendritic cells (DCs) represent one of the most important immune cell subsets in preventing the host from pathogen invasion by promoting both innate and adaptive immunity. Most research on human dendritic cells has focused on the easy-to-obtain dendritic cells derived in vitro from monocytes (MoDCs). However, many questions remain unanswered regarding the role of different dendritic cell types. The investigation of their roles in human immunity is hampered by their rarity and fragility, which especially holds true for type 1 conventional dendritic cells (cDC1s) and for plasmacytoid dendritic cells (pDCs). In vitro differentiation from hematopoietic progenitors emerged as a common way to produce different DC types, but the efficiency and reproducibility of these protocols needed to be improved and the extent to which the DCs generated in vitro resembled their in vivo counterparts required a more rigorous and global assessment. Here, we describe a cost-effective and robust in vitro differentiation system for the production of cDC1s and pDCs equivalent to their blood counterparts, from cord blood CD34+ hematopoietic stem cells (HSCs) cultured on a stromal feeder layer with a combination of cytokines and growth factors.
© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

  • Biochemistry and Molecular biology
  • Immunology and Microbiology

An efficient immunoassay for the B cell help function of SARS-CoV-2-specific memory CD4+ T cells.

In Cell Rep Methods on 20 June 2022 by Ansari, A., Sachan, S., et al.

The B cell "help" function of CD4+ T cells is an important mechanism of adaptive immunity. Here, we describe improved antigen-specific T-B cocultures for quantitative measurement of T cell-dependent B cell responses, with as few as ∼90 T cells. Utilizing M. tuberculosis (Mtb), we show that early priming and activation of CD4+ T cells is important for productive interaction between T and B cells and that similar effects are achieved by supplementing cocultures with monocytes. We find that monocytes promote survivability of B cells via BAFF and stem cell growth factor (SCGF)/C-type lectin domain family 11 member A (CLEC11A), but this alone does not fully recapitulate the effects of monocyte supplementation. Importantly, we demonstrate improved activation and immunological output of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific memory CD4+ T-B cell cocultures with the inclusion of monocytes. This method may therefore provide a more sensitive assay to evaluate the B cell help quality of memory CD4+ T cells, for example, after vaccination or natural infection.
© 2022 The Author(s).

  • COVID-19
  • Immunology and Microbiology

Valosin-containing protein-regulated endoplasmic reticulum stress causes NOD2-dependent inflammatory responses.

In Scientific Reports on 10 March 2022 by Ghalandary, M., Li, Y., et al.

NOD2 polymorphisms may affect sensing of the bacterial muramyl dipeptide (MDP) and trigger perturbed inflammatory responses. Genetic screening of a patient with immunodeficiency and enteropathy revealed a rare homozygous missense mutation in the first CARD domain of NOD2 (ENST00000300589; c.160G > A, p.E54K). Biochemical assays confirmed impaired NOD2-dependent signaling and proinflammatory cytokine production in patient's cells and heterologous cellular models with overexpression of the NOD2 mutant. Immunoprecipitation-coupled mass spectrometry unveiled the ATPase valosin-containing protein (VCP) as novel interaction partner of wildtype NOD2, while the binding to the NOD2 variant p.E54K was abrogated. Knockdown of VCP in coloncarcinoma cells led to impaired NF-κB activity and IL8 expression upon MDP stimulation. In contrast, tunicamycin-induced ER stress resulted in increased IL8, CXCL1, and CXCL2 production in cells with knockdown of VCP, while enhanced expression of these proinflammatory molecules was abolished upon knockout of NOD2. Taken together, these data suggest that VCP-mediated inflammatory responses upon ER stress are NOD2-dependent.
© 2022. The Author(s).

  • Homo sapiens (Human)
  • Cell Biology
  • Immunology and Microbiology
View this product on CiteAb