Product Citations: 7

S100A8/A9 predicts response to PIM kinase and PD-1/PD-L1 inhibition in triple-negative breast cancer mouse models.

In Commun Med (Lond) on 20 February 2024 by Begg, L. R., Orriols, A., et al.

Understanding why some triple-negative breast cancer (TNBC) patients respond poorly to existing therapies while others respond well remains a challenge. This study aims to understand the potential underlying mechanisms distinguishing early-stage TNBC tumors that respond to clinical intervention from non-responders, as well as to identify clinically viable therapeutic strategies, specifically for TNBC patients who may not benefit from existing therapies.
We conducted retrospective bioinformatics analysis of historical gene expression datasets to identify a group of genes whose expression levels in early-stage tumors predict poor clinical outcomes in TNBC. In vitro small-molecule screening, genetic manipulation, and drug treatment in syngeneic mouse models of TNBC were utilized to investigate potential therapeutic strategies and elucidate mechanisms of drug action.
Our bioinformatics analysis reveals a robust association between increased expression of immunosuppressive cytokine S100A8/A9 in early-stage tumors and subsequent disease progression in TNBC. A targeted small-molecule screen identifies PIM kinase inhibitors as capable of decreasing S100A8/A9 expression in multiple cell types, including TNBC and immunosuppressive myeloid cells. Combining PIM inhibition and immune checkpoint blockade induces significant antitumor responses, especially in otherwise resistant S100A8/A9-high PD-1/PD-L1-positive tumors. Notably, serum S100A8/A9 levels mirror those of tumor S100A8/A9 in a syngeneic mouse model of TNBC.
Our data propose S100A8/A9 as a potential predictive and pharmacodynamic biomarker in clinical trials evaluating combination therapy targeting PIM and immune checkpoints in TNBC. This work encourages the development of S100A8/A9-based liquid biopsy tests for treatment guidance.
© 2024. The Author(s).

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research

S100A8/A9 predicts triple-negative breast cancer response to PIM kinase and PD-1/PD-L1 inhibition

Preprint on BioRxiv : the Preprint Server for Biology on 23 September 2023 by Begg, L. R., Orriols, A. M., et al.

ABSTRACT It remains elusive why some triple-negative breast cancer (TNBC) patients respond poorly to existing therapies while others respond well. Our retrospective analysis of historical gene expression datasets reveals that increased expression of immunosuppressive cytokine S100A8/A9 in early-stage tumors is robustly associated with subsequent disease progression in TNBC. Although it has recently gained recognition as a potential anticancer target, S100A8/A9 has not been integrated into clinical study designs evaluating molecularly targeted therapies. Our small molecule screen has identified PIM kinase inhibitors as capable of decreasing S100A8/A9 expression in multiple cell types, including TNBC and immunosuppressive myeloid cells. Furthermore, combining PIM inhibition and immune checkpoint blockade induces significant antitumor responses, especially in otherwise resistant S100A8/A9-high PD-1/PD-L1-positive tumors. Importantly, serum S100A8/A9 levels mirror those of tumor S100A8/A9 in a syngeneic mouse model of TNBC. Thus, our data suggest that S100A8/A9 could be a predictive and pharmacodynamic biomarker in clinical trials evaluating combination therapy targeting PIM and immune checkpoints in TNBC and encourage the development of S100A8/A9-based liquid biopsy tests.

  • Cancer Research

SARS-CoV-2 infection and mRNA vaccination both elicit spike (S)-specific T cell responses. To analyze how T cell memory from prior infection influences T cell responses to vaccination, we evaluated functional T cell responses in naive and previously infected vaccine recipients. Pre-vaccine S-specific responses are predictive of subsequent CD8+ T cell vaccine-response magnitudes. Comparing baseline with post-vaccination TCRβ repertoires, we observed large clonotypic expansions correlated with the frequency of spike-specific T cells. Epitope mapping the largest CD8+ T cell responses confirms that an HLA-A∗03:01 epitope was highly immunodominant. Peptide-MHC tetramer staining together with mass cytometry and single-cell sequencing permit detailed phenotyping and clonotypic tracking of these S-specific CD8+ T cells. Our results demonstrate that infection-induced S-specific CD8+ T cell memory plays a significant role in shaping the magnitude and clonal composition of the circulating T cell repertoire after vaccination, with mRNA vaccination promoting CD8+ memory T cells to a TEMRA-like phenotype.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Homo sapiens (Human)
  • COVID-19
  • Genetics
  • Immunology and Microbiology

"Stapling" scFv for multispecific biotherapeutics of superior properties.

In MAbs on 19 April 2023 by Boucher, L. E., Prinslow, E. G., et al.

Single-chain fragment variable (scFv) domains play an important role in antibody-based therapeutic modalities, such as bispecifics, multispecifics and chimeric antigen receptor T cells or natural killer cells. However, scFv domains exhibit lower stability and increased risk of aggregation due to transient dissociation ("breathing") and inter-molecular reassociation of the two domains (VL and VH). We designed a novel strategy, referred to as stapling, that introduces two disulfide bonds between the scFv linker and the two variable domains to minimize scFv breathing. We named the resulting molecules stapled scFv (spFv). Stapling increased thermal stability (Tm) by an average of 10°C. In multiple scFv/spFv multispecifics, the spFv molecules display significantly improved stability, minimal aggregation and superior product quality. These spFv multispecifics retain binding affinity and functionality. Our stapling design was compatible with all antibody variable regions we evaluated and may be widely applicable to stabilize scFv molecules for designing biotherapeutics with superior biophysical properties.

  • FC/FACS
  • Homo sapiens (Human)

PD-1 directed immunotherapy alters Tfh and humoral immune responses to seasonal influenza vaccine.

In Nature Immunology on 1 August 2022 by Herati, R. S., Knorr, D. A., et al.

Anti-programmed death-1 (anti-PD-1) immunotherapy reinvigorates CD8 T cell responses in patients with cancer but PD-1 is also expressed by other immune cells, including follicular helper CD4 T cells (Tfh) which are involved in germinal centre responses. Little is known, however, about the effects of anti-PD-1 immunotherapy on noncancer immune responses in humans. To investigate this question, we examined the impact of anti-PD-1 immunotherapy on the Tfh-B cell axis responding to unrelated viral antigens. Following influenza vaccination, a subset of adults receiving anti-PD-1 had more robust circulating Tfh responses than adults not receiving immunotherapy. PD-1 pathway blockade resulted in transcriptional signatures of increased cellular proliferation in circulating Tfh and responding B cells compared with controls. These latter observations suggest an underlying change in the Tfh-B cell and germinal centre axis in a subset of immunotherapy patients. Together, these results demonstrate dynamic effects of anti-PD-1 therapy on influenza vaccine responses and highlight analytical vaccination as an approach that may reveal underlying immune predisposition to adverse events.
© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

  • Immunology and Microbiology
View this product on CiteAb