Product Citations: 3

Immune-checkpoint inhibitors have shown promising antitumor effects against certain types of cancer. However, specific immune-checkpoint inhibitors for patients with sarcoma have yet to be identified, whereas the immunological status of peripheral blood in patients with bone sarcoma and soft-tissue sarcoma (STS) remains unknown. In addition, it is unclear whether the immunological status from the peripheral blood could be used as a prognostic indicator. Therefore, the present study aimed to clarify the immunological status of peripheral blood samples derived from patients with bone sarcoma and STS. Immune monitoring was performed using the peripheral blood samples of 61 patients with no metastasis of high-grade sarcoma. A total of 25 patients with metastatic sarcoma were used for comparison. A total of 41 immune cell subsets were analyzed using multicolor-flow cytometry. The patients that did not have metastasis demonstrated higher quantities of monocytic myeloid-derived suppressor cells (M-MDSCs) and T cell immunoglobulin and mucin domain-3 (Tim-3)+ CD8+ T cells, which were significantly associated with poor disease-free survival (DFS) time, while higher quantities of NKG2D+ CD8+ T cells were significantly associated with improved DFS time. Multivariate Cox regression analysis demonstrated that the number of Tim-3+ CD8+ T cells was associated with lower DFS time. A significant association was also found between the number of M-MDSCs and progression-free survival (PFS) time in patients with metastasis. The results suggested the occurrence of immune surveillance, which indicated that the host immune reaction against cancer existed in patients with bone sarcoma and STS. Notably, a high number of M-MDSCs was associated with both DFS and PFS time, suggesting a strong prognostic value. The data suggested that the immune status of peripheral blood was associated with the prognosis in patients with sarcoma, as previously reported in patients with other cancer types. In summary, the results may assist with the development of novel strategies for sarcoma treatment, based on the use of biomarkers or immunotherapy.
Copyright: © Kim et al.

  • Cardiovascular biology
  • Immunology and Microbiology

Dysregulated NF-κB-Dependent ICOSL Expression in Human Dendritic Cell Vaccines Impairs T-cell Responses in Patients with Melanoma.

In Cancer Immunology Research on 1 December 2020 by Maurer, D. M., Adamik, J., et al.

Therapeutic cancer vaccines targeting melanoma-associated antigens are commonly immunogenic but are rarely effective in promoting objective clinical responses. To identify critical molecules for activation of effective antitumor immunity, we have profiled autologous dendritic cell (DC) vaccines used to treat 35 patients with melanoma. We showed that checkpoint molecules induced by ex vivo maturation correlated with in vivo DC vaccine activity. Melanoma patient DCs had reduced expression of cell surface inducible T-cell costimulator ligand (ICOSL) and had defective intrinsic NF-κB signaling. Chromatin immunoprecipitation assays revealed NF-κB-dependent transcriptional regulation of ICOSL expression by DCs. Blockade of ICOSL on DCs reduced priming of antigen-specific CD8+ and CD4+ T cells from naïve donors in vitro Concentration of extracellular/soluble ICOSL released from vaccine DCs positively correlated with patient clinical outcomes, which we showed to be partially regulated by ADAM10/17 sheddase activity. These data point to the critical role of canonical NF-κB signaling, the regulation of matrix metalloproteinases, and DC-derived ICOSL in the specific priming of cognate T-cell responses in the cancer setting. This study supports the implementation of targeted strategies to augment these pathways for improved immunotherapeutic outcomes in patients with cancer.
©2020 American Association for Cancer Research.

  • Homo sapiens (Human)
  • Cancer Research
  • Immunology and Microbiology

Regulatory T Cell Migration Is Dependent on Glucokinase-Mediated Glycolysis.

In Immunity on 21 November 2017 by Kishore, M., Cheung, K. C. P., et al.

Migration of activated regulatory T (Treg) cells to inflamed tissue is crucial for their immune-modulatory function. While metabolic reprogramming during Treg cell differentiation has been extensively studied, the bioenergetics of Treg cell trafficking remains undefined. We have investigated the metabolic demands of migrating Treg cells in vitro and in vivo. We show that glycolysis was instrumental for their migration and was initiated by pro-migratory stimuli via a PI3K-mTORC2-mediated pathway culminating in induction of the enzyme glucokinase (GCK). Subsequently, GCK promoted cytoskeletal rearrangements by associating with actin. Treg cells lacking this pathway were functionally suppressive but failed to migrate to skin allografts and inhibit rejection. Similarly, human carriers of a loss-of-function GCK regulatory protein gene-leading to increased GCK activity-had reduced numbers of circulating Treg cells. These cells displayed enhanced migratory activity but similar suppressive function, while conventional T cells were unaffected. Thus, GCK-dependent glycolysis regulates Treg cell migration.
Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology
View this product on CiteAb