Product Citations: 5

Patient-derived functional immuno-oncology platform identifies responders to ATR inhibitor and immunotherapy combinations in ovarian cancer

Preprint on BioRxiv : the Preprint Server for Biology on 19 February 2024 by Nagaraj, A. S., Salko, M., et al.

Responses to single agent immunotherapies have remained modest in high-grade serous ovarian cancer (HGSC), suggesting the need for combination treatments. Identifying clinically effective immunotherapy combinations (IC) requires pre-clinical testing using models representing the patient-specific immune microenvironment. Here, we established a functional immuno-oncology platform for high-throughput and functional testing of IC using HGSC patient-derived immunocompetent cultures (iPDCs) established on patient-derived omentum gel matrix. We employed genomic and single-cell analysis to assess the intricate and functional characteristics of the iPDCs combined with tumor and immune cell-specific cytotoxic responses. Corroborating the clinical response to Poly (ADP-ribose) polymerase inhibitors (PARPi), iPDCs showed homologous recombination deficiency (HRD) - specific response to PARPi. Importantly, drug responses from iPDCs of chemotherapy and PARPi refractory patients corresponded with patient outcomes and aligned with distinct pathway activities from single-cell RNA sequencing analysis. Furthermore, iPDCs from HRD tumors showed response to anti-PD1 antibody as measured by decrease in tumor cells combined with augmented T cell activation. High-throughput drug testing followed by single cell-imaging from iPDCs revealed patient-specific responses to combination of ataxia telangiectasia and Rad3-related inhibitor (ATRi) with DNA damaging agents or immunotherapies. Integration of cytotoxic responses with immune cell states uncovered patient-specific immune activation with the combination of ATRi and a novel immunotherapy targeting Autotaxin (ATX), and this response was significantly associated with a tumor-cell replication stress biomarker in single-cell analysis of tCycIF highly multiplexed imaging. In conclusion, iPDCs provide a platform for high-throughput screening and functional testing of immuno-oncology agents for precision oncology in HGSC.

  • FC/FACS
  • Cancer Research
  • Immunology and Microbiology

Signals at the contact site of antigen-presenting cells (APCs) and T cells help orchestrate the adaptive immune response. CD155 on APCs can interact with the stimulatory receptor DNAM1 or inhibitory receptor TIGIT on T cells. The CD155/DNAM1/TIGIT axis is under extensive investigation as immunotherapy target in inflammatory diseases including cancer, chronic infection and autoimmune diseases. We investigated a possible role for CD155/DNAM1/TIGIT signaling in psoriatic disease.
By flow cytometry, we analyzed peripheral blood mononuclear cells of patients with psoriasis (n = 20) or psoriatic arthritis (n = 21), and healthy individuals (n = 7). We measured CD155, TIGIT, and DNAM1 expression on leukocyte subsets and compared activation-induced cytokine production between CD155-positive and CD155-negative APCs. We assessed the effects of TIGIT and DNAM1 blockade on T cell activation, and related the expression of CD155/DNAM1/TIGIT axis molecules to measures of disease activity.
High CD155 expression associates with tumor necrosis factor (TNF) production in myeloid and plasmacytoid dendritic cells (DC). In CD1c+ myeloid DC, activation-induced CD155 expression associates with increased HLA-DR expression. CD8 T cells - but not CD4 T cells - express high levels of TIGIT. DNAM1 blockade decreases T cell pro-inflammatory cytokine production, while TIGIT blockade increased T cell proliferation. Finally, T cell TIGIT expression shows an inverse correlation with inflammation biomarkers in psoriatic disease.
CD155 is increased on pro-inflammatory APCs, while the receptors DNAM1 and TIGIT expressed on T cells balance the inflammatory response by T cells. In psoriatic disease, low TIGIT expression on T cells is associated with systemic inflammation.
© The Author(s) 2020. Published by Oxford University Press on behalf of the British Society for Immunology.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Interferons (IFNs) are cytokines that are central to the host defence against viruses and other microorganisms. If not properly regulated, IFNs may contribute to the pathogenesis of inflammatory autoimmune, or infectious diseases. To identify genetic polymorphisms regulating the IFN system we performed an unbiased genome-wide protein-quantitative trait loci (pQTL) mapping of cell-type specific type I and type II IFN receptor levels and their responses in immune cells from 303 healthy individuals. Seven genome-wide significant (p < 5.0E-8) pQTLs were identified. Two independent SNPs that tagged the multiple sclerosis (MS)-protective HLA class I alleles A*02/A*68 and B*44, respectively, were associated with increased levels of IFNAR2 in B and T cells, with the most prominent effect in IgD-CD27+ memory B cells. The increased IFNAR2 levels in B cells were replicated in cells from an independent set of healthy individuals and in MS patients. Despite increased IFNAR2 levels, B and T cells carrying the MS-protective alleles displayed a reduced response to type I IFN stimulation. Expression and methylation-QTL analysis demonstrated increased mRNA expression of the pseudogene HLA-J in B cells carrying the MS-protective class I alleles, possibly driven via methylation-dependent transcriptional regulation. Together these data suggest that the MS-protective effects of HLA class I alleles are unrelated to their antigen-presenting function, and propose a previously unappreciated function of type I IFN signalling in B and T cells in MS immune-pathogenesis.

  • FC/FACS
  • Homo sapiens (Human)
  • Genetics

Aim: To investigate the efficacy of adjuvant chemotherapy plus tumor-infiltrating lymphocytes (TILs) therapy in osteosarcoma patients with a poor response to neoadjuvant chemotherapy. Materials & methods: 40 patients received adjuvant chemotherapy (Group 1) and 40 patients received adjuvant chemotherapy plus TILs therapy (Group 2). Disease-free survival (DFS) and overall survival (OS) were analyzed by Kaplan-Meier analysis. Results: The median DFS (mDFS; 65.3 months) and median OS (mOS; 95.8 months) in Group 2 were significantly prolonged compared with those in Group 1 (55.5 months for mDFS and 80.4 months for mOS). Univariate and multivariate analyses indicated that a greater number of TILs transfused was an independent prognostic factor for both mDFS and mOS. Conclusion: Adjuvant chemotherapy plus TILs therapy may prolong survival of patients with a poor response to neoadjuvant chemotherapy.

  • Cancer Research
  • Immunology and Microbiology

Type I IFN system activation in newborns exposed to Ro/SSA and La/SSB autoantibodies in utero.

In RMD Open on 1 January 2020 by Hedlund, M., Thorlacius, G. E., et al.

In utero exposure of the fetus to Ro/La autoantibodies may lead to congenital heart block (CHB). In the mother, these autoantibodies are associated with activation of the type I interferon (IFN)-system. As maternal autoantibodies are transferred to the fetus during pregnancy, we investigated whether the type I IFN-system is activated also in newborns of anti-Ro/La positive mothers, and whether fetal IFN activation is affected by maternal immunomodulatory treatment.
Blood drawn at birth from anti-Ro/La positive mothers, their newborns and healthy control pairs was separated into plasma and peripheral blood mononuclear cells (PBMC). PBMC were analysed directly or cultured. mRNA expression was analysed by microarrays, cell surface markers by flow cytometry, and IFNα levels by immunoassays.
We observed increased expression of IFN-regulated genes and elevated plasma IFNα levels not only in anti-Ro/La positive women, but also in their newborns. CD14+ monocytes of both anti-Ro/La positive mothers and their neonates showed increased expression of Sialic acid-binding Ig-like lectin-1, indicating cellular activation. Notably, the IFN score of neonates born to mothers receiving immunomodulatory treatment was similar to that of controls, despite persistent IFN activation in the mothers. In both maternal and neonatal PBMC, IFNα production was induced when cells were cultured with anti-Ro/La positive plasma.
Ro/La autoantibody-exposed neonates at risk of CHB have signs of an activated immune system with an IFN signature. This study further demonstrates that neonatal cells can produce IFNα when exposed to autoantibody-containing plasma, and that maternal immunomodulatory treatment may diminish the expression of IFN-regulated genes in the fetus.
© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

  • FC/FACS
View this product on CiteAb