Product Citations: 9

TMEM219 signaling promotes intestinal stem cell death and exacerbates colitis.

In The Journal of Clinical Investigation on 15 May 2025 by D'Addio, F., Amabile, G., et al.

Mechanisms by which mucosal regeneration is abrogated in inflammatory bowel disease (IBD) are still under investigation, and a role for an intestinal stem cell (ISC) defect is now emerging. Herein, we report an abnormal ISC death that occurs in Crohn's disease, which exacerbates colitis, limits ISC-dependent mucosal repair, and is controlled through the death factor Transmembrane protein 219 (TMEM219). Large alterations in TMEM219 expression were observed in patients with Crohn's disease, particularly in those with active disease and/or those who were nonresponders to conventional therapy, confirming that TMEM219 signaling is abnormally activated and leads to failure of the mucosal regenerative response. Mechanistic studies revealed a proapoptotic TMEM219-mediated molecular signature in Crohn's disease, which associates with Caspase-8 activation and ISC death. Pharmacological blockade of the IGFBP3/TMEM219 binding/signal with the recombinant protein ecto-TMEM219 restored the self-renewal abilities of miniguts generated from patients with Crohn's disease in vitro and ameliorated DSS-induced and T cell-mediated colitis in vivo, ultimately leading to mucosal healing. Genetic tissue-specific deletion of TMEM219 in ISCs in newly generated TMEM219fl/flLGR5cre mice revived their mucosal regenerative abilities both in vitro and in vivo. Our findings demonstrate that a TMEM219-dependent ISC death exacerbates colitis and that TMEM219 blockade reestablishes intestinal self-renewal properties in IBD.

  • Stem Cells and Developmental Biology

Rationale: One of the hallmarks of Alzheimer's disease (AD) is the accumulation of dysfunctional mitochondria. Herpes simplex virus type 1 (HSV1) may be a risk factor for the neuropathology linked to amyloid β (Aβ) accumulation. However, the mechanisms underlying HSV1-associated mitochondrial dysfunction in AD remain unclear. ALT001 is a novel drug that ameliorates AD-related cognitive impairment via ULK1/Rab9-mediated alternative mitophagy. In this study, we investigated the effects of ALT001 on the neurodegeneration-related microglial signatures associated with HSV1 infection. Methods: Molecular mechanisms and physiological functions of mitophagy was investigated in HSV1-infected microglia, including primary murine and human embryonic stem cell (ESC)-derived microglia (ES-MG), as well as in a microglia-neuron co-culture system. Microglial gene signatures following HSV1 infection in the presence or absence of ALT001 were analyzed using bulk RNA sequencing, and the effects of ALT001 on microglial phagocytosis and microglia-mediated immune responses were further evaluated by flow cytometry and cytokine profiles. Results: HSV1 infection inhibited PINK1/Parkin-mediated mitophagy via HSV1-encoded protein kinase US3, resulting in mitochondrial dysfunction in both human and mouse microglia. Furthermore, transcriptomic analysis of HSV1-infected microglia revealed an upregulation of distinct microglial genes associated with disease-associated microglia (DAM)-like phenotype and pro-inflammatory activity. Pharmacological targeting of mitophagy using ALT001 prevents mitochondrial damage caused by HSV1 through ULK1/Rab9-mediated pathway. Furthermore, ALT001-induced ULK1/Rab9-dependent mitophagy restricts HSV1 infection by activating interferon-mediated antiviral immunity. Consequently, ALT001 reduces HSV1-triggered neuroinflammation, recovers HSV1-altered microglial phagocytosis for Aβ, and efficiently reverses morphological and molecular abnormalities in HSV1-infected microglia by triggering mitophagy in ES-MG. ALT001 also suppressed HSV1-mediated Aβ accumulation and neurodegeneration in the microglia-neuron co-culture and cerebral organoid model. Conclusions: In this study, we identified a critical molecular link between HSV1 and AD-related microglial dysfunction. Furthermore, our findings provide an evidence that therapeutic targeting of alternative mitophagy via ALT001 effectively interfere with HSV1-induced microglial dysfunction and alleviate neurodegeneration.
© The author(s).

  • Immunology and Microbiology
  • Neuroscience

Patient-derived functional immuno-oncology platform identifies responders to ATR inhibitor and immunotherapy combinations in ovarian cancer

Preprint on BioRxiv : the Preprint Server for Biology on 19 February 2024 by Nagaraj, A. S., Salko, M., et al.

Responses to single agent immunotherapies have remained modest in high-grade serous ovarian cancer (HGSC), suggesting the need for combination treatments. Identifying clinically effective immunotherapy combinations (IC) requires pre-clinical testing using models representing the patient-specific immune microenvironment. Here, we established a functional immuno-oncology platform for high-throughput and functional testing of IC using HGSC patient-derived immunocompetent cultures (iPDCs) established on patient-derived omentum gel matrix. We employed genomic and single-cell analysis to assess the intricate and functional characteristics of the iPDCs combined with tumor and immune cell-specific cytotoxic responses. Corroborating the clinical response to Poly (ADP-ribose) polymerase inhibitors (PARPi), iPDCs showed homologous recombination deficiency (HRD) - specific response to PARPi. Importantly, drug responses from iPDCs of chemotherapy and PARPi refractory patients corresponded with patient outcomes and aligned with distinct pathway activities from single-cell RNA sequencing analysis. Furthermore, iPDCs from HRD tumors showed response to anti-PD1 antibody as measured by decrease in tumor cells combined with augmented T cell activation. High-throughput drug testing followed by single cell-imaging from iPDCs revealed patient-specific responses to combination of ataxia telangiectasia and Rad3-related inhibitor (ATRi) with DNA damaging agents or immunotherapies. Integration of cytotoxic responses with immune cell states uncovered patient-specific immune activation with the combination of ATRi and a novel immunotherapy targeting Autotaxin (ATX), and this response was significantly associated with a tumor-cell replication stress biomarker in single-cell analysis of tCycIF highly multiplexed imaging. In conclusion, iPDCs provide a platform for high-throughput screening and functional testing of immuno-oncology agents for precision oncology in HGSC.

  • Cancer Research
  • Immunology and Microbiology

Ischemic wound revascularization by the stromal vascular fraction relies on host-donor hybrid vessels.

In Npj Regenerative Medicine on 11 February 2023 by Vuerich, R., Groppa, E., et al.

Nonhealing wounds place a significant burden on both quality of life of affected patients and health systems. Skin substitutes are applied to promote the closure of nonhealing wounds, although their efficacy is limited by inadequate vascularization. The stromal vascular fraction (SVF) from the adipose tissue is a promising therapy to overcome this limitation. Despite a few successful clinical trials, its incorporation in the clinical routine has been hampered by their inconsistent results. All these studies concluded by warranting pre-clinical work aimed at both characterizing the cell types composing the SVF and shedding light on their mechanism of action. Here, we established a model of nonhealing wound, in which we applied the SVF in combination with a clinical-grade skin substitute. We purified the SVF cells from transgenic animals to trace their fate after transplantation and observed that it gave rise to a mature vascular network composed of arteries, capillaries, veins, as well as lymphatics, structurally and functionally connected with the host circulation. Then we moved to a human-in-mouse model and confirmed that SVF-derived endothelial cells formed hybrid human-mouse vessels, that were stabilized by perivascular cells. Mechanistically, SVF-derived endothelial cells engrafted and expanded, directly contributing to the formation of new vessels, while a population of fibro-adipogenic progenitors stimulated the expansion of the host vasculature in a paracrine manner. These data have important clinical implications, as they provide a steppingstone toward the reproducible and effective adoption of the SVF as a standard care for nonhealing wounds.
© 2023. The Author(s).

  • FC/FACS

Spatial transcriptomics landscape of lesions from non-communicable inflammatory skin diseases.

In Nature Communications on 13 December 2022 by Schäbitz, A., Hillig, C., et al.

Abundant heterogeneous immune cells infiltrate lesions in chronic inflammatory diseases and characterization of these cells is needed to distinguish disease-promoting from bystander immune cells. Here, we investigate the landscape of non-communicable inflammatory skin diseases (ncISD) by spatial transcriptomics resulting in a large repository of 62,000 spatially defined human cutaneous transcriptomes from 31 patients. Despite the expected immune cell infiltration, we observe rather low numbers of pathogenic disease promoting cytokine transcripts (IFNG, IL13 and IL17A), i.e. >125 times less compared to the mean expression of all other genes over lesional skin sections. Nevertheless, cytokine expression is limited to lesional skin and presented in a disease-specific pattern. Leveraging a density-based spatial clustering method, we identify specific responder gene signatures in direct proximity of cytokines, and confirm that detected cytokine transcripts initiate amplification cascades of up to thousands of specific responder transcripts forming localized epidermal clusters. Thus, within the abundant and heterogeneous infiltrates of ncISD, only a low number of cytokine transcripts and their translated proteins promote disease by initiating an inflammatory amplification cascade in their local microenvironment.
© 2022. The Author(s).

  • Immunology and Microbiology
View this product on CiteAb