Product Citations: 4

Blood and tissue HIV-1 reservoirs display plasticity and lack of compartmentalization in virally suppressed people.

In Nature Communications on 4 March 2025 by Pardons, M., Lambrechts, L., et al.

Characterizing the HIV-1 reservoir in blood and tissues is crucial for the development of curative strategies. Using an HIV Tat mRNA-containing lipid nanoparticle (Tat-LNP) in combination with panobinostat, we show that p24+ cells from blood and lymph nodes exhibit distinct phenotypes. Blood p24+ cells are found in both central/transitional (TCM/TTM) and effector memory subsets, mostly lack CXCR5 expression and are enriched in GZMA+ cells. In contrast, most lymph node p24+ cells display a TCM/TTM phenotype, with approximately 50% expressing CXCR5 and nearly all lacking GZMA expression. Furthermore, germinal center T follicular helper cells do not appear to harbor the translation-competent reservoir in long-term suppressed individuals. Near full-length HIV-1 sequencing in longitudinal samples from matched blood, lymph nodes, and gut indicates that clones of infected cells, including those carrying an inducible provirus, persist and spread across various anatomical compartments. Finally, uniform genetic diversity across sites suggests the absence of ongoing replication in tissues under treatment.
© 2025. The Author(s).

  • FC/FACS
  • Homo sapiens (Human)
  • Cardiovascular biology

Children with perinatally acquired HIV exhibit distinct immune responses to 4CMenB vaccine.

In JCI Insight on 11 April 2024 by Cotugno, N., Neri, A., et al.

Children with perinatally acquired HIV (PHIV) have special vaccination needs, as they make suboptimal immune responses. Here, we evaluated safety and immunogenicity of 2 doses of 4-component group B meningococcal vaccine in antiretroviral therapy-treated children with PHIV and healthy controls (HCs). Assessments included the standard human serum bactericidal antibody (hSBA) assay and measurement of IgG titers against capsular group B Neisseria meningitidis antigens (fHbp, NHBA, NadA). The B cell compartment and vaccine-induced antigen-specific (fHbp+) B cells were investigated by flow cytometry, and gene expression was investigated by multiplexed real-time PCR. A good safety and immunogenicity profile was shown in both groups; however, PHIV demonstrated a reduced immunogenicity compared with HCs. Additionally, PHIV showed a reduced frequency of fHbp+ and an altered B cell subset distribution, with higher fHbp+ frequency in activated memory and tissue-like memory B cells. Gene expression analyses on these cells revealed distinct mechanisms between PHIV and HC seroconverters. Overall, these data suggest that PHIV presents a diverse immune signature following vaccination. The impact of such perturbation on long-term maintenance of vaccine-induced immunity should be further evaluated in vulnerable populations, such as people with PHIV.

  • Immunology and Microbiology

Potent latency reversal by Tat RNA-containing nanoparticle enables multi-omic analysis of the HIV-1 reservoir.

In Nature Communications on 18 December 2023 by Pardons, M., Cole, B., et al.

The development of latency reversing agents that potently reactivate HIV without inducing global T cell activation would benefit the field of HIV reservoir research and could pave the way to a functional cure. Here, we explore the reactivation capacity of a lipid nanoparticle containing Tat mRNA (Tat-LNP) in CD4 T cells from people living with HIV undergoing antiretroviral therapy (ART). When combined with panobinostat, Tat-LNP induces latency reversal in a significantly higher proportion of latently infected cells compared to PMA/ionomycin (≈ 4-fold higher). We demonstrate that Tat-LNP does not alter the transcriptome of CD4 T cells, enabling the characterization of latently infected cells in their near-native state. Upon latency reversal, we identify transcriptomic differences between infected cells carrying an inducible provirus and non-infected cells (e.g. LINC02964, GZMA, CCL5). We confirm the transcriptomic differences at the protein level and provide evidence that the long non-coding RNA LINC02964 plays a role in active HIV infection. Furthermore, p24+ cells exhibit heightened PI3K/Akt signaling, along with downregulation of protein translation, suggesting that HIV-infected cells display distinct signatures facilitating their long-term persistence. Tat-LNP represents a valuable research tool for in vitro reservoir studies as it greatly facilitates the in-depth characterization of HIV reservoir cells' transcriptome and proteome profiles.
© 2023. The Author(s).

  • Genetics

Macrophages drive KSHV B cell latency.

In Cell Reports on 25 July 2023 by Szymula, A., Samayoa-Reyes, G., et al.

Kaposi's sarcoma herpesvirus (KSHV) establishes lifelong infection and persists in latently infected B cells. Paradoxically, in vitro B cell infection is inefficient, and cells rapidly die, suggesting the absence of necessary factor(s). KSHV epidemiology unexpectedly mirrors that of malaria and certain helminthic infections, while other herpesviruses are ubiquitous. Elevated circulating monocytes are common in these parasitic infections. Here, we show that KSHV infection of monocytes or M-CSF-differentiated (M2) macrophages is highly efficient. Proteomic analyses demonstrate that infection induces macrophage production of B cell chemoattractants and activating factor. We find that KSHV acts with monocytes or M2 macrophages to stimulate B cell survival, proliferation, and plasmablast differentiation. Further, macrophages drive infected plasma cell differentiation and long-term viral latency. In Kenya, where KSHV is endemic, we find elevated monocyte levels in children with malaria. These findings demonstrate a role for mononuclear phagocytes in KSHV B cell latency and suggest that mononuclear phagocyte abundance may underlie KSHV's geographic disparity.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology
View this product on CiteAb