Product Citations: 5

A SARS-CoV-2 EG.5 mRNA vaccine induces a broad-spectrum immune response in mice.

In MedComm (2020) on 1 January 2025 by Wang, H., Peng, Q., et al.

The emerging of emergent SARS-CoV-2 subvariants has reduced the protective efficacy of COVID-19 vaccines. Therefore, novel COVID-19 vaccines targeting these emergent variants are needed. We designed and prepared CoV072, an mRNA-based vaccine against SARS-CoV-2 Omicron (EG.5) and other emergent SARS-CoV-2 subvariants that encodes the EG.5 spike protein. Six-week-old female BALB/C mice were used to assess humoral and cellular immune responses and cross-reactive neutralizing activity against various SARS-CoV-2 subvariants. Meanwhile different immunization strategies and doses were performed to detect the immunogenicity of this mRNA vaccine. Our results show that two doses of 5 µg CoV072 or a single dose of 15 µg CoV072 both induced broad-spectrum cross-protection ability in mice. Compared with a single dose of 15 µg CoV072, two doses of 5 µg COV072 exhibited higher levels of pseudovirus neutralizing antibody (PNAb) and cross-reactive IgG responses to multiple variants. Moreover, higher levels of neutralizing antibody (NAb) against live XBB and EG.5 variants were also induced. Th1-biased cellular immune response was induced in all vaccination groups. The antigen design and immunization strategy of this study have reference significance for the research of the next generation of COVID-19 vaccine and other vaccines.
© 2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

  • Mus musculus (House mouse)
  • COVID-19
  • Genetics
  • Immunology and Microbiology

Clade 2.3.4.4 H5Nx avian influenza viruses (AIVs) have circulated globally and caused substantial economic loss. Increasing numbers of humans have been infected with Clade 2.3.4.4 H5N6 AIVs in recent years. Only a few human influenza vaccines have been licensed to date. However, the licensed live attenuated influenza virus vaccine exhibited the potential of being recombinant with the wild-type influenza A virus (IAV). Therefore, we developed a chimeric cold-adapted attenuated influenza vaccine based on the Clade 2.3.4.4 H5 AIVs. These H5 vaccines demonstrate the advantage of being non-recombinant with circulated IAVs in the future influenza vaccine study. The findings of our current study reveal that these H5 vaccines can induce cross-reactive protective efficacy in mice and ferrets. Our H5 vaccines may provide a novel option for developing human-infected Clade 2.3.4.4 H5 AIV vaccines.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Currently licensed influenza vaccines focus immune responses on viral hemagglutinin (HA), while the other major surface glycoprotein neuraminidase (NA) is not tightly controlled in inactivated vaccine formulations despite evidence that anti-NA antibodies reduce clinical disease. We utilized a bicistronic self-amplifying mRNA (sa-mRNA) platform encoding both HA and NA from four seasonal influenza strains, creating a quadrivalent influenza vaccine. sa-mRNA vaccines encoding an NA component induced the production of NA-inhibiting antibodies and CD4+ T-cell responses in both monovalent and quadrivalent formulations. Including NA in the vaccine enabled cross-neutralization against antigenically drifted strains and provided greater protection than HA alone upon A(H3N2) challenge in ferrets. These results demonstrate that next-generation bicistronic sa-mRNA vaccines expressing HA and NA induce potent antibodies against both viral coat proteins, as well as vaccine-specific cell-mediated immunity. When formulated as a quadrivalent seasonal influenza vaccine, the sa-mRNA platform provides an opportunity to increase the breadth of protection through cross-neutralizing anti-NA antibodies.
© 2023. Springer Nature Limited.

  • Genetics
  • Immunology and Microbiology

Anlotinib Benefits the αPDL1 Immunotherapy by Activating ROS/JNK/AP-1 Pathway to Upregulate PDL1 Expression in Colorectal Cancer.

In Oxidative Medicine and Cellular Longevity on 15 October 2022 by Luo, B., Zhang, S., et al.

Colorectal cancer (CRC) is one of the prevalent malignant tumors. This study is aimed at evaluating the mechanism of anlotinib (anlo) on tumor microenvironment (TME) in CRC, and its effects in combination with immune checkpoint inhibitors (ICIs) therapy. Firstly, MC38 and CT26 cells were both exposed to different gradient concentrations of anlo for 72 h, to investigate the cell viability and synergetic therapy efficacy with ICIs by CCK8. The results showed that anlo could obviously inhibit cell growth and showed no synergistic efficacy therapy in combination with αPDL1 in vitro. Then, we found the upregulation of programmed cell death ligand 1(PDL1) expression both in vitro and in vivo after anlo treatment. In vivo, anlo could enhance the percentage of natural killer (NK) cells and M1 macrophage cells and decrease the percentage of M2 macrophage cells in TME. Moreover, we explored the mechanism and we proved that anlo could activate reactive oxygen species (ROS)/c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling pathway to increase the expression levels of PDL1, IFN-α/β/γ, and CXCL2 in two cell lines in vitro. We also proved that anlo had synergistic effects with ICIs in vivo. Finally, it could also increase the mRNA and protein PDL1 expression levels in human cell lines, which was consistent with mouse CRC cell lines. However, there are still a few limitations. On one hand, the ROS/JNK/AP-1 pathway needs to be proved whether it can be activated in human cell lines. On the other hand, the mechanism behind ROS promoting phosphorylation of JNK needs to be explored.
Copyright © 2022 Bixian Luo et al.

  • Cancer Research
  • Immunology and Microbiology

Increased humoral immunity by DNA vaccination using an α-tocopherol-based adjuvant.

In Human Vaccines Immunotherapeutics on 3 August 2017 by Karlsson, I., Borggren, M., et al.

DNA vaccines induce broad immunity, which involves both humoral and strong cellular immunity, and can be rapidly designed for novel or evolving pathogens such as influenza. However, the humoral immunogenicity in humans and higher animals has been suboptimal compared with that of traditional vaccine approaches. We tested whether the emulsion-based and α-tocopherol containing adjuvant Diluvac Forte® has the ability to enhance the immunogenicity of a naked DNA vaccine (i.e., plasmid DNA). As a model vaccine, we used plasmids encoding both a surface-exposed viral glycoprotein (hemagglutinin) and an internal non-glycosylated nucleoprotein in the Th1/Th2 balanced CB6F1 mouse model. The naked DNA (50 µg) was premixed at a 1:1 volume/volume ratio with Diluvac Forte®, an emulsion containing different concentrations of α-tocopherol, the emulsion alone or endotoxin-free phosphate-buffered saline (PBS). The animals received 2 intracutaneous immunizations spaced 3 weeks apart. When combined with Diluvac Forte® or the emulsion containing α-tocopherol, the DNA vaccine induced a more potent and balanced immunoglobulin G (IgG)1 and IgG2c response, and both IgG subclass responses were significantly enhanced by the adjuvant. The DNA vaccine also induced CD4+ and CD8+ vaccine-specific T cells; however, the adjuvant did not exert a significant impact. We concluded that the emulsion-based adjuvant Diluvac Forte® enhanced the immunogenicity of a naked DNA vaccine encoding influenza proteins and that the adjuvant constituent α-tocopherol plays an important role in this immunogenicity. This induction of a potent and balanced humoral response without impairment of cellular immunity constitutes an important advancement toward effective DNA vaccines.

  • Mus musculus (House mouse)
  • Genetics
  • Immunology and Microbiology
View this product on CiteAb