Product Citations: 4

Immunodeficient mice engrafted with psoriatic human skin are widely used for the preclinical evaluation of new drug candidates. However, the T-cell activity, including the IL23/IL17 pathway, declines in the graft over time after engraftment, which likely affects the study data. Here, we investigated whether the T-cell activity could be sustained in xenografted psoriatic skin by local stimulation of T cells or systemic injection of autologous CD4 + T cells. We surgically transplanted human psoriatic skin from 5 untreated patients onto female NOG mice. Six days after surgery, mice received an intraperitoneal injection of autologous human CD4+ T cells, a subcutaneous injection under the grafts of a T-cell stimulation cocktail consisting of recombinant human IL2, human IL23, antihuman CD3, and antihuman CD28, or saline. Mice were euthanized 21 d after surgery and spleens and graft biopsies were collected for analysis. Human T cells were present in the grafts, and 60% of the grafts maintained the psoriatic phenotype. However, neither local T-cell stimulation nor systemic injection of autologous CD4+ T cells affected the protein levels of human IL17A, IL22, IFN γ, and TNF α in the grafts. In conclusion, NOG mice seem to accept psoriatic skin grafts, but the 2 approaches studied here did not affect human T-cell activity in the grafts. Therefore, NOG mice do not appear in this regard to be superior to other immunodeficient mice used for psoriasis xenografts.

  • Immunology and Microbiology

Control of Neutrophil activation through Semaphorin 7A-Plexin C1 is essential for immune defense during pulmonary sepsis

Preprint on BioRxiv : the Preprint Server for Biology on 8 November 2021 by Granja, T., Köhler, D., et al.

h4>ABSTRACT/h4> Pulmonary defense mechanisms are critical for host integrity during the early phase of pneumonia and sepsis. These processes are fundamentally dependent on the activation of neutrophils during the early phase of the innate immune response. Recent work has shown that semaphorin 7A (Sema7A) holds significant impact on platelet activation, yet its role in neutrophil migration and function is not well known. We report here that Sema7A binds to neutrophil PlexinC1, increasing integrins and L-selectin on the neutrophil surface. Sema7A-induced neutrophil activation also prompted neutrophil chemotaxis in vitro and the formation of platelet-neutrophil complexes in vivo. We also observed altered adhesion and transmigration of neutrophils in Sema7A-/- animals in the lung. Sema7A-/- animals also showed altered crawling properties of neutrophils. This resulted in increased number of neutrophils in the interstitial space of Sema7A-/- animals but reduced numbers of neutrophils in the alveolar space during pneumonia-induced pulmonary sepsis. This was associated with significantly worse outcome of Sema7A-/- animals in a model of Klebsiella pneumoniae . Furthermore, we were able to show a correlation between serum levels of Sema7A in patients with ARDS and oxygenation levels. Thus, we show here that Sema7A has an immunomodulatory effect though which might influence patient outcome during pulmonary sepsis. h4>Summary/h4> Sema7A controls pulmonary immune defense

  • Cardiovascular biology
  • Immunology and Microbiology

The OX40 Axis is Associated with Both Systemic and Local Involvement in Atopic Dermatitis.

In Acta Dermato-venereologica on 31 March 2020 by Elsner, J. S., Carlsson, M., et al.

Atopic dermatitis (AD) is a chronic, or chronically relapsing, inflammatory skin disease associated with asthma and allergic rhinitis, and is dominated by Th2 cells. The co-stimulatory T-cell receptor OX40 and its ligand, OX40L, play a central role in the pathogenesis of AD, as their interactions are crucial for the generation of TH2 memory cells. Using enzyme-linked immunoassay (ELISA) and flow cytometry on blood samples from patients with AD and healthy volunteers, this study shows that the serum level of soluble (s) OX40 is decreased in patients with AD, and the expression of OX40 by activated skin-homing CD4+ T cells is increased. This study further shows, using immunofluorescence on skin biopsies, that OX40+ and OX40L+ cells are co-located within the dermis, indicating local activity of OX40/OX40L. Serum levels of sOX40 were associated with atopic diseases and, together, these results support that the OX40 system is important for chronic inflammation in AD skin.

  • FC/FACS
  • Homo sapiens (Human)

Oral cholera vaccination promotes homing of IgA+ memory B cells to the large intestine and the respiratory tract.

In Mucosal Immunology on 1 July 2018 by van Splunter, M., Van Hoffen, E., et al.

Oral cholera vaccination is used to induce immune responses in the intestines to protect against cholera infection. However, oral vaccination may also affect immune responses in other mucosal tissues. To study this, tissue-specific homing potential and kinetics of B-cell responses were characterized after oral cholera vaccination. Healthy adult volunteers received two doses of Dukoral® and blood, saliva, nasal wash, and fecal samples were collected over time to detect vaccine-specific antibodies. Additionally, homing potential of lymphocytes to small intestine, colon, airways, skin, and periphery was measured by expression of Integrin β1 and β7, CCR9, CCR10, CCR7, and CLA. After vaccination, antibody responses to cholera toxin B (CTB) and Dukoral® were detected in serum and nasal wash. CTB-specific memory B cells in peripheral blood and tissue homing profiles of memory B cells peaked at day 18. IgA+ memory B cells expressed markers that enable homing to the airways and colon, while IgA- memory B cells primarily expressed small-intestine-homing markers. These data show that oral cholera vaccination has a differential effect on immune responses in various mucosal sites, including the respiratory tract.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology
View this product on CiteAb