Product Citations: 18

Dendritic cell (DC)-derived extracellular vesicles (DEVs) are promising candidates for cancer vaccines, but their therapeutic effects still need further optimization. In this study, we utilized neoantigens, lipopolysaccharide and IFN-γ to induce the maturation of DCs, and then isolated DEVs derived from these mature DCs. We showed that the immune checkpoint inhibitor (anti-CTLA-4 antibody, aCTLA-4) can improve the immunostimulatory function of DEVs by directly activating T cells through immune checkpoint signal blockade. The cytokine interleukin-12 (IL-12), as one of the third signals for T cell activation, can also enhance the capability of DEVs to activate T cells directly. Based on these findings, we designed the engineered DEVs conjugated with IL-12 and aCTLA-4 (DEV@IL-12-aCTLA-4) to improve the therapeutic potential of DEVs by providing sufficient immune regulatory signals. Moreover, the carrier property of DEVs also contributes to the delivery of IL-12 and aCTLA-4 to lymph nodes. This indicates that the conjugation of DEVs with IL-12 and aCTLA-4 constitutes a complementary approach, where IL-12 and aCTLA-4 help to enhance the T cell activation effect of DEVs, and DEVs facilitate the delivery of IL-12 and aCTLA-4. Our results showed that DEV@IL-12-aCTLA-4 can enhance the Th1 immune response and reverse exhausted CD8+ T cells in the tumour microenvironment, effectively inducing robust T cell immune responses and inhibiting tumour growth in tumour-bearing mice. Overall, this study expands the theoretical foundation of DEVs and provides a universal strategy for optimizing cancer combination immunotherapy by reprogramming DEVs.
© 2025 The Author(s). Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles.

  • Cancer Research
  • Immunology and Microbiology

The nucleoprotein (NP) of type A influenza virus (IAV) is highly conserved across all virus strains, making it an attractive candidate antigen for universal vaccines. While various studies have explored NP-induced mucosal immunity, here we interrogated the mechanistic differences between intramuscular (IM) and intranasal (IN) delivery of a recombinant adenovirus carrying NP fused with a bifunctional CD40 ligand. Despite being less effective than IM delivery in inducing systemic cellular immune responses and antibody-dependent cellular cytotoxicity (ADCC), IN immunization elicited superior antigen-specific recall humoral and cellular response in the nasal associated lymphoid tissue (NALT) of the upper respiratory tract, the initial site of immune recognition and elimination of inhaled pathogens. IN vaccination also induced significantly stronger pulmonary T cell responses in the lower respiratory tract than IM vaccination, in particular the CD8 T cells. Moreover, blocking lymphocyte circulation abrogated IM but not IN immunization induced protection, illustrating the critical role of local memory immune response upon viral infection. Notably, the CD40-targeted nasal delivery not only improved the magnitude but also the breadth of protection, including against lethal challenge with a newly isolated highly pathogenic avian H5N1 strain. These findings are informative for the design of universal mucosal vaccines, where the predominant mode of protection is independent of neutralizing antibodies.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

High mitochondrial DNA levels accelerate lung adenocarcinoma progression.

In Science Advances on 1 November 2024 by Mennuni, M., Wilkie, S. E., et al.

Lung adenocarcinoma is a common aggressive cancer and a leading cause of mortality worldwide. Here, we report an important in vivo role for mitochondrial DNA (mtDNA) copy number during lung adenocarcinoma progression in the mouse. We found that lung tumors induced by KRASG12D expression have increased mtDNA levels and enhanced mitochondrial respiration. To experimentally assess a possible causative role in tumor progression, we induced lung cancer in transgenic mice with a general increase in mtDNA copy number and found that they developed a larger tumor burden, whereas mtDNA depletion in tumor cells reduced tumor growth. Immune cell populations in the lung and cytokine levels in plasma were not affected by increased mtDNA levels. Analyses of large cancer databases indicate that mtDNA copy number is also important in human lung cancer. Our study thus reports experimental evidence for a tumor-intrinsic causative role for mtDNA in lung cancer progression, which could be exploited for development of future cancer therapies.

  • Mus musculus (House mouse)
  • Cancer Research
  • Cell Biology
  • Genetics

Multi-scale in vivo imaging of tumour development using a germline conditional triple-reporter system

Preprint on Research Square on 3 April 2024 by Dzien, P., Iraolagoitia, X. R., et al.

Imaging reporter genes are indispensable for visualising biological processes in living subjects, particularly in cancer research where they have been used to observe tumour development, cancer cell dissemination, and treatment response. Engineering reporter genes into the germline frequently involves single imaging modality reporters operating over limited spatial scales. To address these limitations, we developed an inducible triple-reporter mouse model (Rosa26 LSL − NRL ) that integrates reporters for complementary imaging modalities, fluorescence, bioluminescence and positron emission tomography (PET), along with inducible Cre-lox functionality for precise spatiotemporal control of reporter expression. We demonstrated robust reporter inducibility across various tissues in the Rosa26 LSL − NRL mouse, facilitating effective tracking and characterisation of tumours in liver and lung cancer mouse models. We precisely pinpointed tumour location using multimodal whole-body imaging which guided in situ lung microscopy to visualise cell-cell interactions within the tumour microenvironment. The triple-reporter system establishes a robust new platform technology for multi-scale investigation of biological processes within whole animals, enabling tissue-specific and sensitive cell tracking, spanning from the whole-body to cellular scales.

  • Mus musculus (House mouse)
  • Cancer Research

Genomic instability can trigger cancer-intrinsic innate immune responses that promote tumor rejection. However, cancer cells often evade these responses by overexpressing immune checkpoint regulators, such as PD-L1. Here, we identify the SNF2-family DNA translocase SMARCAL1 as a factor that favors tumor immune evasion by a dual mechanism involving both the suppression of innate immune signaling and the induction of PD-L1-mediated immune checkpoint responses. Mechanistically, SMARCAL1 limits endogenous DNA damage, thereby suppressing cGAS-STING-dependent signaling during cancer cell growth. Simultaneously, it cooperates with the AP-1 family member JUN to maintain chromatin accessibility at a PD-L1 transcriptional regulatory element, thereby promoting PD-L1 expression in cancer cells. SMARCAL1 loss hinders the ability of tumor cells to induce PD-L1 in response to genomic instability, enhances anti-tumor immune responses and sensitizes tumors to immune checkpoint blockade in a mouse melanoma model. Collectively, these studies uncover SMARCAL1 as a promising target for cancer immunotherapy.
Copyright © 2024 Elsevier Inc. All rights reserved.

  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb