Product Citations: 19

Aspirin prevents metastasis by limiting platelet TXA2 suppression of T cell immunity.

In Nature on 1 April 2025 by Yang, J., Yamashita-Kanemaru, Y., et al.

Metastasis is the spread of cancer cells from primary tumours to distant organs and is the cause of 90% of cancer deaths globally1,2. Metastasizing cancer cells are uniquely vulnerable to immune attack, as they are initially deprived of the immunosuppressive microenvironment found within established tumours3. There is interest in therapeutically exploiting this immune vulnerability to prevent recurrence in patients with early cancer at risk of metastasis. Here we show that inhibitors of cyclooxygenase 1 (COX-1), including aspirin, enhance immunity to cancer metastasis by releasing T cells from suppression by platelet-derived thromboxane A2 (TXA2). TXA2 acts on T cells to trigger an immunosuppressive pathway that is dependent on the guanine exchange factor ARHGEF1, suppressing T cell receptor-driven kinase signalling, proliferation and effector functions. T cell-specific conditional deletion of Arhgef1 in mice increases T cell activation at the metastatic site, provoking immune-mediated rejection of lung and liver metastases. Consequently, restricting the availability of TXA2 using aspirin, selective COX-1 inhibitors or platelet-specific deletion of COX-1 reduces the rate of metastasis in a manner that is dependent on T cell-intrinsic expression of ARHGEF1 and signalling by TXA2 in vivo. These findings reveal a novel immunosuppressive pathway that limits T cell immunity to cancer metastasis, providing mechanistic insights into the anti-metastatic activity of aspirin and paving the way for more effective anti-metastatic immunotherapies.
© 2025. The Author(s).

  • Cancer Research
  • Immunology and Microbiology

Antigen-presenting cancer-associated fibroblasts in murine pancreatic tumors differentially control regulatory T cell phenotype and function via CXCL9 and CCL22

Preprint on BioRxiv : the Preprint Server for Biology on 1 April 2025 by Maru, S. Y., Wetzel, M., et al.

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a complex tumor microenvironment (TME) including stromal cells that influence resistance to therapy. Recent studies have revealed that stromal cancer-associated fibroblasts (CAFs) are heterogeneous in origin, gene expression, and function. Antigen-presenting CAFs (apCAFs), are defined by major histocompatibility complex (MHC)-II expression and can activate effector CD4 + T cells that have the potential to contribute to the anti-cancer immune response, but also can induce regulatory T cell (Treg) differentiation. Whether apCAFs promote or restrain the antitumor response remains uncertain. Using tumor clones of the KPC murine PDAC model differing in sensitivity to immune checkpoint blockade (ICB), we found that immunosensitive (sKPC) tumors were characterized by higher immune cell and apCAF infiltration than resistant (rKPC) tumors. IMC analysis showed proximity of apCAFs and CD4 + T cells in both sKPC and rKPC tumors implicating interaction within the TME. apCAF-depleted sKPC tumor-bearing mice had diminished sensitivity to ICB. apCAFs from both sKPC and rKPC tumors activated tumor-infiltrating CD4 + T cells and induced Treg differentiation. However, transcriptomic analysis showed that Tregs induced by apCAFs were overexpressed for immunosuppressive genes in rKPCs relative to sKPCs, and that this is associated with differential chemokine signaling from apCAFs depending on tumor origin. Together these data implicate apCAFs as important mediators of the antitumor immune response, modulation of which could facilitate the development of more effective anti-tumor immune based approaches for PDAC patients.

  • Cancer Research
  • Immunology and Microbiology

Lurbinectedin sensitizes PD-L1 blockade therapy by activating STING-IFN signaling in small-cell lung cancer.

In Cell Reports Medicine on 17 December 2024 by Chakraborty, S., Sen, U., et al.

Lurbinectedin is an approved second-line treatment for small-cell lung cancer (SCLC). SCLC clinical trials combining lurbinectedin with PD-L1 blockade are currently ongoing. However, the immunomodulatory effects of lurbinectedin remain largely unknown. In this study, we demonstrate that lurbinectedin treatment activates the STING pathway, which increases interferon (IFN) signaling, pro-inflammatory chemokines, and major histocompatibility complex class I (MHC-I) in SCLC models. Lurbinectedin treatment augments the anti-tumor immune response of PD-L1 blockade with significant tumor regression in first-line and maintenance settings in SCLC mouse models. In vivo, lurbinectedin treatment increases CD8+ T cells and M1 macrophages and decreases immunosuppressive M2 macrophages. STING and CD8 depletion reverses the anti-tumor response. Interestingly, our study shows that lurbinectedin treatment upregulates MHC-I/II genes and CD8 in SCLC clinical samples. We provide mechanistic insights into the effect of lurbinectedin on STING-mediated multimodal immune activation and demonstrate that lurbinectedin treatment represents a promising therapeutic strategy to potentiate the efficacy of immunotherapy in SCLC.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Cancer Research

CTLA4 blockade abrogates KEAP1/STK11-related resistance to PD-(L)1 inhibitors.

In Nature on 1 November 2024 by Skoulidis, F., Araújo, H. A., et al.

For patients with advanced non-small-cell lung cancer (NSCLC), dual immune checkpoint blockade (ICB) with CTLA4 inhibitors and PD-1 or PD-L1 inhibitors (hereafter, PD-(L)1 inhibitors) is associated with higher rates of anti-tumour activity and immune-related toxicities, when compared with treatment with PD-(L)1 inhibitors alone. However, there are currently no validated biomarkers to identify which patients will benefit from dual ICB1,2. Here we show that patients with NSCLC who have mutations in the STK11 and/or KEAP1 tumour suppressor genes derived clinical benefit from dual ICB with the PD-L1 inhibitor durvalumab and the CTLA4 inhibitor tremelimumab, but not from durvalumab alone, when added to chemotherapy in the randomized phase III POSEIDON trial3. Unbiased genetic screens identified loss of both of these tumour suppressor genes as independent drivers of resistance to PD-(L)1 inhibition, and showed that loss of Keap1 was the strongest genomic predictor of dual ICB efficacy-a finding that was confirmed in several mouse models of Kras-driven NSCLC. In both mouse models and patients, KEAP1 and STK11 alterations were associated with an adverse tumour microenvironment, which was characterized by a preponderance of suppressive myeloid cells and the depletion of CD8+ cytotoxic T cells, but relative sparing of CD4+ effector subsets. Dual ICB potently engaged CD4+ effector cells and reprogrammed the tumour myeloid cell compartment towards inducible nitric oxide synthase (iNOS)-expressing tumoricidal phenotypes that-together with CD4+ and CD8+ T cells-contributed to anti-tumour efficacy. These data support the use of chemo-immunotherapy with dual ICB to mitigate resistance to PD-(L)1 inhibition in patients with NSCLC who have STK11 and/or KEAP1 alterations.
© 2024. The Author(s).

EMT activates exocytotic Rabs to coordinate invasion and immunosuppression in lung cancer.

In Proceedings of the National Academy of Sciences of the United States of America on 11 July 2023 by Xiao, G. Y., Tan, X., et al.

Epithelial-to-mesenchymal transition (EMT) underlies immunosuppression, drug resistance, and metastasis in epithelial malignancies. However, the way in which EMT orchestrates disparate biological processes remains unclear. Here, we identify an EMT-activated vesicular trafficking network that coordinates promigratory focal adhesion dynamics with an immunosuppressive secretory program in lung adenocarcinoma (LUAD). The EMT-activating transcription factor ZEB1 drives exocytotic vesicular trafficking by relieving Rab6A, Rab8A, and guanine nucleotide exchange factors from miR-148a-dependent silencing, thereby facilitating MMP14-dependent focal adhesion turnover in LUAD cells and autotaxin-mediated CD8+ T cell exhaustion, indicating that cell-intrinsic and extrinsic processes are linked through a microRNA that coordinates vesicular trafficking networks. Blockade of ZEB1-dependent secretion reactivates antitumor immunity and negates resistance to PD-L1 immune checkpoint blockade, an important clinical problem in LUAD. Thus, EMT activates exocytotic Rabs to drive a secretory program that promotes invasion and immunosuppression in LUAD.

  • Mus musculus (House mouse)
  • Cancer Research
View this product on CiteAb