Product Citations: 22

Changes in Circulating CD44+CD62L- Treg Subsets and CD44-CD62L+ Treg Subsets Reflect the Clinical Status of Patients with Allergic Rhinitis.

In International Archives of Allergy and Immunology on 4 September 2024 by Liu, J. Y., Qiao, Y. L., et al.

This study clarified the expression changes and clinical significance of CD44+CD62L- Treg and CD44-CD62L+ Treg subsets in the peripheral blood of patients with allergic rhinitis (AR).
The peripheral blood of 39 patients with AR and 42 healthy controls was collected. Clinical data, such as sex, age, IgE titer, allergen screening information and visual analogue scale (VAS) score, were recorded. Changes in serum IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ were detected using the cytometric bead array method. Flow cytometry was used to detect the proportions of Th1, Th2, Th17, TFH, and Th9 cells and the proportions of CD44+CD62L- Treg and CD44-CD62L+ Treg subsets. Correlation analysis was performed between the CD44+CD62L- Treg subsets and the CD44-CD62L+ Treg subsets with clinical indicators (VAS score, total IgE titer), cytokines (IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ), and Th1/Th2/Th17/TFH/Th9 cell proportions.
Compared to the control group, the proportion of total Treg cells and CD44+CD62L- Treg cells in the AR group decreased, and the proportion of CD44-CD62L+ Treg cells increased (p < 0.05). The proportions of CD44+CD62L- Treg cells significantly negatively correlated with Th2 cells (R = -0.5270, p < 0.05) and positively correlated with Treg cytokine IL-10 (R = 0.6447, p < 0.05). In addition, CD44+CD62L- Treg cells negatively correlated with the VAS score (R = -0.4956, p < 0.05), total IgE level (R = -0.4177, p < 0.05) and Th2 cytokine IL-6 level (R = -0.3034, p < 0.05) but positively correlated with the Th1 cytokine IL-2 (R = 0.4331, p < 0.05). In contrast, the proportion of CD44+CD62L- Treg cells significantly positively correlated with the Th2 cells (R = 0.6187, p < 0.05). Moreover, the proportion of CD44-CD62L+ Treg cells positively correlated with the VAS score (R = 0.4060, p < 0.05), total IgE level (R = 0.5224, p < 0.05) and Th2 cytokine IL-4 (R = 0.2647, p < 0.05) and IL-6 levels (R = 0.3824, p < 0.05) but negatively correlated with Th1 cytokine IL-2 (R = -0.3451, p < 0.05) and IL-10 (R = -0.3277, p < 0.05).
A greater proportion of CD44+CD62L- Tregs correlated with better reversal of the Th1/Th2 imbalance and milder clinical symptoms in AR patients. The presence of more CD44-CD62L+ Tregs correlated with a weaker immunosuppressive effect on Th2 cells and more severe clinical symptoms in AR patients. These findings provide new perspectives for the treatment and disease monitoring of AR.
© 2024 S. Karger AG, Basel.

  • Immunology and Microbiology

Transient Differentiation-State Plasticity Occurs during Acute Lymphoblastic Leukemia Initiation.

In Cancer Research on 15 August 2024 by Poort, V. M., Hagelaar, R., et al.

Leukemia is characterized by oncogenic lesions that result in a block of differentiation, whereas phenotypic plasticity is retained. A better understanding of how these two phenomena arise during leukemogenesis in humans could help inform diagnosis and treatment strategies. Here, we leveraged the well-defined differentiation states during T-cell development to pinpoint the initiation of T-cell acute lymphoblastic leukemia (T-ALL), an aggressive form of childhood leukemia, and study the emergence of phenotypic plasticity. Single-cell whole genome sequencing of leukemic blasts was combined with multiparameter flow cytometry to couple cell identity and clonal lineages. Irrespective of genetic events, leukemia-initiating cells altered their phenotypes by differentiation and dedifferentiation. The construction of the phylogenies of individual leukemias using somatic mutations revealed that phenotypic diversity is reflected by the clonal structure of cancer. The analysis also indicated that the acquired phenotypes are heritable and stable. Together, these results demonstrate a transient period of plasticity during leukemia initiation, where phenotypic switches seem unidirectional. Significance: A method merging multicolor flow cytometry with single-cell whole genome sequencing to couple cell identity with clonal lineages uncovers differentiation-state plasticity in leukemia, reconciling blocked differentiation with phenotypic plasticity in cancer.
©2024 The Authors; Published by the American Association for Cancer Research.

  • FC/FACS
  • Cancer Research

Cytotoxic CD8 +T lymphocytes (CTLs) are key players of adaptive anti-tumor immunity based on their ability to specifically recognize and destroy tumor cells. Many cancer immunotherapies rely on unleashing CTL function. However, tumors can evade killing through strategies which are not yet fully elucidated. To provide deeper insight into tumor evasion mechanisms in an antigen-dependent manner, we established a human co-culture system composed of tumor and primary immune cells. Using this system, we systematically investigated intrinsic regulators of tumor resistance by conducting a complementary CRISPR screen approach. By harnessing CRISPR activation (CRISPRa) and CRISPR knockout (KO) technology in parallel, we investigated gene gain-of-function as well as loss-of-function across genes with annotated function in a colon carcinoma cell line. CRISPRa and CRISPR KO screens uncovered 187 and 704 hits, respectively, with 60 gene hits overlapping between both. These data confirmed the role of interferon-γ (IFN-γ), tumor necrosis factor α (TNF-α) and autophagy pathways and uncovered novel genes implicated in tumor resistance to killing. Notably, we discovered that ILKAP encoding the integrin-linked kinase-associated serine/threonine phosphatase 2 C, a gene previously unknown to play a role in antigen specific CTL-mediated killing, mediate tumor resistance independently from regulating antigen presentation, IFN-γ or TNF-α responsiveness. Moreover, our work describes the contrasting role of soluble and membrane-bound ICAM-1 in regulating tumor cell killing. The deficiency of membrane-bound ICAM-1 (mICAM-1) or the overexpression of soluble ICAM-1 (sICAM-1) induced resistance to CTL killing, whereas PD-L1 overexpression had no impact. These results highlight the essential role of ICAM-1 at the immunological synapse between tumor and CTL and the antagonist function of sICAM-1.
© 2023, Herzfeldt et al.

  • Cancer Research
  • Immunology and Microbiology

Changes in percentage of GATA3+ regulatory T cells and their pathogenic roles in allergic rhinitis

In Nan Fang Yi Ke Da Xue Xue Bao = Journal of Southern Medical University on 20 February 2023 by Sun, L., Jiao, W., et al.

To investigate the changes in percentage of GATA3+ regulatory T (Treg) cells in patients with allergic rhinitis (AR) and mouse models.
The nasal mucosa specimens were obtained from 6 AR patients and 6 control patients for detection of nasal mucosal inflammation. Peripheral blood mononuclear cells (PBMC) were collected from 12 AP patients and 12 control patients to determine the percentages of Treg cells and GATA3+ Treg cells. In a C57BL/6 mouse model of AR, the AR symptom score, peripheral blood OVA-sIgE level, and nasal mucosal inflammation were assessed, and the spleen of mice was collected for detecting the percentages of Treg cells and GATA3+ Treg cells and the expressions of Th2 cytokines.
Compared with the control patients, AR patients showed significantly increased eosinophil infiltration and goblet cell proliferation in the nasal mucosa (P < 0.01) and decreased percentages of Treg cells and GATA3+ Treg cells (P < 0.05). The mouse models of AR also had more obvious allergic symptoms, significantly increased OVA-sIgE level in peripheral blood, eosinophil infiltration and goblet cell hyperplasia (P < 0.01), markedly lowered percentages of Treg cells and GATA3+ Treg cells in the spleen (P < 0.01), and increased expressions of IL-4, IL-6 and IL-10 (P < 0.05).
The percentage of GATA3+ Treg cells is decreased in AR patients and mouse models. GATA3+ Treg cells possibly participate in Th2 cell immune response, both of which are involved in the occurrence and progression of AR, suggesting the potential of GATA3+ Treg cells as a new therapeutic target for AR.

  • Immunology and Microbiology

Adaptive immune responses to SARS-CoV-2 persist in the pharyngeal lymphoid tissue of children.

In Nature Immunology on 1 January 2023 by Xu, Q., Milanez-Almeida, P., et al.

Most studies of adaptive immunity to SARS-CoV-2 infection focus on peripheral blood, which may not fully reflect immune responses at the site of infection. Using samples from 110 children undergoing tonsillectomy and adenoidectomy during the COVID-19 pandemic, we identified 24 samples with evidence of previous SARS-CoV-2 infection, including neutralizing antibodies in serum and SARS-CoV-2-specific germinal center and memory B cells in the tonsils and adenoids. Single-cell B cell receptor (BCR) sequencing indicated virus-specific BCRs were class-switched and somatically hypermutated, with overlapping clones in the two tissues. Expanded T cell clonotypes were found in tonsils, adenoids and blood post-COVID-19, some with CDR3 sequences identical to previously reported SARS-CoV-2-reactive T cell receptors (TCRs). Pharyngeal tissues from COVID-19-convalescent children showed persistent expansion of germinal center and antiviral lymphocyte populations associated with interferon (IFN)-γ-type responses, particularly in the adenoids, and viral RNA in both tissues. Our results provide evidence for persistent tissue-specific immunity to SARS-CoV-2 in the upper respiratory tract of children after infection.
© 2022. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

  • FC/FACS
  • Homo sapiens (Human)
  • COVID-19
  • Immunology and Microbiology
View this product on CiteAb