Product Citations: 5

A follicular regulatory Innate Lymphoid Cell population impairs interactions between germinal center Tfh and B cells.

In Communications Biology on 12 May 2021 by O'Connor, M. H., Muir, R., et al.

Innate Lymphoid Cells (ILCs) are immune cells typically found on mucosal surfaces and in secondary lymphoid organs where they regulate the immune response to pathogens. Despite their key role in the immune response, there are still fundamental gaps in our understanding of ILCs. Here we report a human ILC population present in the follicles of tonsils and lymph nodes termed follicular regulatory ILCs (ILCFR) that to our knowledge has not been previously identified. ILCFR have a distinct phenotype and transcriptional program when compared to other defined ILCs. Surprisingly, ILCFR inhibit the ability of follicular helper T (Tfh) cells to provide B cell help. The localization of ILCFR to the germinal centers suggests these cells may interfere with germinal center B cell (GC-B) and germinal center Tfh cell (GC-Tfh) interactions through the production of transforming growth factor beta (TGF-β. Intriguingly, under conditions of impaired GC-Tfh-GC-B cell interactions, such as human immunodeficiency virus (HIV) infection, the frequency of these cells is increased. Overall, we predict a role for ILCFR in regulating GC-Tfh-GC-B cell interactions and propose they expand in chronic inflammatory conditions.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Regulatory Innate Lymphoid Cells Control Innate Intestinal Inflammation.

In Cell on 21 September 2017 by Wang, S., Xia, P., et al.

An emerging family of innate lymphoid cells (termed ILCs) has an essential role in the initiation and regulation of inflammation. However, it is still unclear how ILCs are regulated in the duration of intestinal inflammation. Here, we identify a regulatory subpopulation of ILCs (called ILCregs) that exists in the gut and harbors a unique gene identity that is distinct from that of ILCs or regulatory T cells (Tregs). During inflammatory stimulation, ILCregs can be induced in the intestine and suppress the activation of ILC1s and ILC3s via secretion of IL-10, leading to protection against innate intestinal inflammation. Moreover, TGF-β1 is induced by ILCregs during the innate intestinal inflammation, and autocrine TGF-β1 sustains the maintenance and expansion of ILCregs. Therefore, ILCregs play an inhibitory role in the innate immune response, favoring the resolution of intestinal inflammation.
Copyright © 2017 Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression.

In Nature Immunology on 1 December 2016 by Gerriets, V. A., Kishton, R. J., et al.

CD4+ effector T cells (Teff cells) and regulatory T cells (Treg cells) undergo metabolic reprogramming to support proliferation and immunological function. Although signaling via the lipid kinase PI(3)K (phosphatidylinositol-3-OH kinase), the serine-threonine kinase Akt and the metabolic checkpoint kinase complex mTORC1 induces both expression of the glucose transporter Glut1 and aerobic glycolysis for Teff cell proliferation and inflammatory function, the mechanisms that regulate Treg cell metabolism and function remain unclear. We found that Toll-like receptor (TLR) signals that promote Treg cell proliferation increased PI(3)K-Akt-mTORC1 signaling, glycolysis and expression of Glut1. However, TLR-induced mTORC1 signaling also impaired Treg cell suppressive capacity. Conversely, the transcription factor Foxp3 opposed PI(3)K-Akt-mTORC1 signaling to diminish glycolysis and anabolic metabolism while increasing oxidative and catabolic metabolism. Notably, Glut1 expression was sufficient to increase the number of Treg cells, but it reduced their suppressive capacity and Foxp3 expression. Thus, inflammatory signals and Foxp3 balance mTORC1 signaling and glucose metabolism to control the proliferation and suppressive function of Treg cells.

  • FC/FACS
  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Cell Biology
  • Immunology and Microbiology

Critical role of the NKG2D receptor for NK cell-mediated control and immune escape of B-cell lymphoma.

In European Journal of Immunology on 1 September 2015 by Belting, L., Hömberg, N., et al.

Little is known on the control of lymphomas by NK cells. Here, we study the role of the NK group 2D (NKG2D) receptor for the immunosurveillance of lymphoma. By using transplantable tumors as well as a λ-myc-transgenic model of endogenously arising lymphoma and NKG2D-deficient mice, we show that NK cells eliminate tumor cells in vivo after receiving two signals. One step involved the activation of NK cells giving rise to IFN-γ expression, which was effected by MHCI(low) tumor cells or DCs. However, this was necessary but not sufficient to mediate cytotoxicity. Triggering cytotoxicity additionally required a second step, which could be mediated by engagement of the NKG2D receptor. Thus, NKG2D-deficient NK cells could become activated in vivo, but they were not able to reject transplanted lymphomas or to degranulate in animals bearing autochthonous lymphomas. Tumor growth in NKG2D-deficient λ-myc-transgenic mice was significantly accelerated compared to NKG2D-competent animals. Whereas the latter developed tumors that lost expression of NKG2D ligands (NKG2D-L) in late disease stages, this did not occur in NKG2D-deficient mice. This indicates that NK cells and the NKG2D receptor play a role for control of lymphomas and that selection for NKG2D-L loss mutants provides a mechanism of tumor escape.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • Cancer Research
  • Immunology and Microbiology

T cell-dependent IgM memory B cells generated during bacterial infection are required for IgG responses to antigen challenge.

In The Journal of Immunology on 1 August 2013 by Yates, J. L., Racine, R., et al.

Immunological memory has long considered to be harbored in B cells that express high-affinity class-switched IgG. IgM-positive memory B cells can also be generated following immunization, although their physiological role has been unclear. In this study, we show that bacterial infection elicited a relatively large population of IgM memory B cells that were uniquely identified by their surface expression of CD11c, CD73, and programmed death-ligand 2. The cells lacked expression of cell surface markers typically expressed by germinal center B cells, were CD138 negative, and did not secrete Ab ex vivo. The population was also largely quiescent and accumulated somatic mutations. The IgM memory B cells were located in the region of the splenic marginal zone and were not detected in blood or other secondary lymphoid organs. Generation of the memory cells was CD4 T cell dependent and required IL-21R signaling. In vivo depletion of the IgM memory B cells abrogated the IgG recall responses to specific Ag challenge, demonstrating that the cell population was required for humoral memory, and underwent class-switch recombination following Ag encounter. Our findings demonstrate that T cell-dependent IgM memory B cells can be elicited at high frequency and can play an important role in maintaining long-term immunity during bacterial infection.

  • Immunology and Microbiology
View this product on CiteAb