Product Citations: 7

Developmental signals control chromosome segregation fidelity during pluripotency and neurogenesis by modulating replicative stress.

In Nature Communications on 28 August 2024 by De Jaime-Soguero, A., Hattemer, J., et al.

Human development relies on the correct replication, maintenance and segregation of our genetic blueprints. How these processes are monitored across embryonic lineages, and why genomic mosaicism varies during development remain unknown. Using pluripotent stem cells, we identify that several patterning signals-including WNT, BMP, and FGF-converge into the modulation of DNA replication stress and damage during S-phase, which in turn controls chromosome segregation fidelity in mitosis. We show that the WNT and BMP signals protect from excessive origin firing, DNA damage and chromosome missegregation derived from stalled forks in pluripotency. Cell signalling control of chromosome segregation declines during lineage specification into the three germ layers, but re-emerges in neural progenitors. In particular, we find that the neurogenic factor FGF2 induces DNA replication stress-mediated chromosome missegregation during the onset of neurogenesis, which could provide a rationale for the elevated chromosomal mosaicism of the developing brain. Our results highlight roles for morphogens and cellular identity in genome maintenance that contribute to somatic mosaicism during mammalian development.
© 2024. The Author(s).

  • Genetics
  • Stem Cells and Developmental Biology

Novobiocin blocks nucleic acid binding to Polθ and inhibits stimulation of its ATPase activity.

In Nucleic Acids Research on 13 October 2023 by Syed, A., Filandr, F., et al.

Polymerase theta (Polθ) acts in DNA replication and repair, and its inhibition is synthetic lethal in BRCA1 and BRCA2-deficient tumor cells. Novobiocin (NVB) is a first-in-class inhibitor of the Polθ ATPase activity, and it is currently being tested in clinical trials as an anti-cancer drug. Here, we investigated the molecular mechanism of NVB-mediated Polθ inhibition. Using hydrogen deuterium exchange-mass spectrometry (HX-MS), biophysical, biochemical, computational and cellular assays, we found NVB is a non-competitive inhibitor of ATP hydrolysis. NVB sugar group deletion resulted in decreased potency and reduced HX-MS interactions, supporting a specific NVB binding orientation. Collective results revealed that NVB binds to an allosteric site to block DNA binding, both in vitro and in cells. Comparisons of The Cancer Genome Atlas (TCGA) tumors and matched controls implied that POLQ upregulation in tumors stems from its role in replication stress responses to increased cell proliferation: this can now be tested in fifteen tumor types by NVB blocking ssDNA-stimulation of ATPase activity, required for Polθ function at replication forks and DNA damage sites. Structural and functional insights provided in this study suggest a path for developing NVB derivatives with improved potency for Polθ inhibition by targeting ssDNA binding with entropically constrained small molecules.
© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.

  • Biochemistry and Molecular biology

A signalling rheostat controls chromosome segregation fidelity during early lineage specification and neurogenesis by modulating DNA replication stress

Preprint on BioRxiv : the Preprint Server for Biology on 18 July 2023 by De Jaime-Soguero, A., Hattemer, J., et al.

The development and homeostasis of organisms rely on the correct replication, maintenance and segregation of their genetic blueprints. How these intracellular processes are monitored across generations of different human cellular lineages, and why the spatio-temporal distribution of mosaicism varies during development remain unknown. Here, we identify several lineage specification signals that regulate chromosome segregation fidelity in both human and mouse pluripotent stem cells. Through epistatic analyses, we find that that WNT, BMP and FGF form a signalling “rheostat” upstream of ATM that monitors replication fork velocity, origin firing and DNA damage during S-phase in pluripotency, which in turn controls spindle polymerisation dynamics and faithful chromosome segregation in the following mitosis. Cell signalling control of chromosome segregation fidelity declines together with ATM activity after pluripotency exit and specification into the three human germ layers, or further differentiation into meso– and endoderm lineages, but re-emerges during neuronal lineage specification. In particular, we reveal that a tug-of-war between FGF and WNT signalling in neural progenitor cells results in DNA damage and chromosome missegregation during cortical neurogenesis, which could provide a rationale for the high levels of mosaicism in the human brain. Our results highlight a moonlighting role of morphogens, patterning signals and growth factors in genome maintenance during pluripotency and lineage specification, which could have important implications for our understanding on how mutations and aneuploidy arise during human development and disease. One sentence summary Developmental signals link genome maintenance to cell fate

  • Genetics

Increased replication origin firing links replication stress to whole chromosomal instability in human cancer.

In Cell Reports on 13 December 2022 by Böhly, N., Schmidt, A. K., et al.

Chromosomal instability (CIN) is a hallmark of cancer and comprises structural CIN (S-CIN) and numerical or whole chromosomal CIN (W-CIN). Recent work indicated that replication stress (RS), known to contribute to S-CIN, also affects mitotic chromosome segregation, possibly explaining the common co-existence of S-CIN and W-CIN in human cancer. Here, we show that RS-induced increased origin firing is sufficient to trigger W-CIN in human cancer cells. We discovered that overexpression of origin firing genes, including GINS1 and CDC45, correlates with W-CIN in human cancer specimens and causes W-CIN in otherwise chromosomally stable human cells. Furthermore, modulation of the ATR-CDK1-RIF1 axis increases the number of firing origins and leads to W-CIN. Importantly, chromosome missegregation upon additional origin firing is mediated by increased mitotic microtubule growth rates, a mitotic defect prevalent in chromosomally unstable cancer cells. Thus, our study identifies increased replication origin firing as a cancer-relevant trigger for chromosomal instability.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Cancer Research
  • Genetics

A druggable addiction to de novo pyrimidine biosynthesis in diffuse midline glioma.

In Cancer Cell on 12 September 2022 by Pal, S., Kaplan, J. P., et al.

Diffuse midline glioma (DMG) is a uniformly fatal pediatric cancer driven by oncohistones that do not readily lend themselves to drug development. To identify druggable targets for DMG, we conducted a genome-wide CRISPR screen that reveals a DMG selective dependency on the de novo pathway for pyrimidine biosynthesis. This metabolic vulnerability reflects an elevated rate of uridine/uracil degradation that depletes DMG cells of substrates for the alternate salvage pyrimidine biosynthesis pathway. A clinical stage inhibitor of DHODH (rate-limiting enzyme in the de novo pathway) diminishes uridine-5'-phosphate (UMP) pools, generates DNA damage, and induces apoptosis through suppression of replication forks-an "on-target" effect, as shown by uridine rescue. Matrix-assisted laser desorption/ionization (MALDI) mass spectroscopy imaging demonstrates that this DHODH inhibitor (BAY2402234) accumulates in the brain at therapeutically relevant concentrations, suppresses de novo pyrimidine biosynthesis in vivo, and prolongs survival of mice bearing intracranial DMG xenografts, highlighting BAY2402234 as a promising therapy against DMGs.
Copyright © 2022 Elsevier Inc. All rights reserved.

  • Cancer Research
  • Genetics
View this product on CiteAb