Product Citations: 56

Malignant pleural effusion (MPE), persistently generated by thorax tumor cells at the advanced stage, remains a major challenge for cancer therapy. Herein, we develop an ultra-sensitive piezoelectric nano-system by doping ytterbium in metal-organic framework (O3P@LPYU), which can be triggered by physiological intrapleural pressure during breath. Under the gently alterative pressure, the piezoelectric nanoparticles with notable peroxidase-like activity effectively produce a burst of reactive oxygen species and induce immunogenic cell death by catalysis of carried ozone as well as peroxide in interstitial fluid. A clear and sustained biodistribution is observed in thorax effusion and tumors upon intrapleural administration of particle. Remarkably, due to the abundant substrates in oxygen-rich environment of pleural cavity, O3P@LPYU particle provides a potent reduction of MPE volume and durable inhibition of tumor growth in thorax. Our work not only develops a bio-responsive piezoelectric nano-system, but also provides a strategy for persistent suppression of MPE in clinics.
© 2025. The Author(s).

C/EBPβ activation in vascular smooth muscle cells promotes hyperlipidemia-induced phenotypic transition and arterial stiffness.

In Signal Transduction and Targeted Therapy on 2 April 2025 by Ma, J., Yang, X., et al.

Arterial stiffness is a critical factor in cardiovascular and cerebrovascular events, yet clinical practice lacks specific therapeutic targets and biomarkers for its assessment. Hyperlipidemia closely correlates with arterial stiffness, and we observed elevated CCAAT/enhancer-binding protein β (C/EBPβ) expression in atherosclerotic mouse arterial walls. As the arterial medial layer predominantly consists of vascular smooth muscle cells (VSMCs), C/EBPβ's role in VSMCs under hyperlipidemia remains unclear. Our findings demonstrate that cholesterol-induced phenotypic transition of contractile VSMCs to macrophage-like cells coincides with C/EBPβ upregulation and activation. The activation of C/EBPβ is closely related to cellular assembly and organization, regulating the cytoskeleton via Disheveled-associated activator of morphogenesis 1 (Daam1). Conditional knockout of C/EBPβ in VSMCs of ApoE-/- mice alleviated hyperlipidemia-induced vascular remodeling and reduced the elevation of aortic pulse wave velocity. Additionally, C/EBPβ-regulated cytokine platelet-derived growth factor-CC (PDGF-CC) is correlated with brachial-ankle pulse wave velocity in humans. These results indicate that the activation of C/EBPβ promotes the transition of VSMCs from a contractile phenotype to a macrophage-like phenotype by regulating morphological changes, and C/EBPβ activation contributes to hyperlipidemia-induced arterial stiffness. PDGF-CC exhibited a significant association with arterial stiffness and may serve as a promising indicator of arterial stiffness in humans. Our study reveals molecular mechanisms behind hyperlipidemia-induced arterial stiffness and provides potential therapeutic targets and biomarkers.
© 2025. The Author(s).

Integrative analysis of immunogenic PANoptosis and experimental validation of cinobufagin-induced activation to enhance glioma immunotherapy.

In Journal of Experimental & Clinical Cancer Research : CR on 3 February 2025 by Cai, Y., Xiao, H., et al.

Glioma, particularly glioblastoma (GBM), is a highly aggressive tumor with limited responsiveness to immunotherapy. PANoptosis, a form of programmed cell death merging pyroptosis, apoptosis, and necroptosis, plays an important role in reshaping the tumor microenvironment (TME) and enhancing immunotherapy effectiveness. This study investigates PANoptosis dynamics in glioma and explores the therapeutic potential of its activation, particularly through natural compounds such as cinobufagin.
We comprehensively analyzed PANoptosis-related genes (PANoRGs) in multiple glioma cohorts, identifying different PANoptosis patterns and constructing the PANoptosis enrichment score (PANoScore) to evaluate its relationship with patient prognosis and immune activity. Cinobufagin, identified as a PANoptosis activator, was evaluated for its ability to induce PANoptosis and enhance anti-tumor immune responses both in vitro and in vivo GBM models.
Our findings indicate that high PANoScore gliomas showed increased immune cell infiltration, particularly effector T cells, and enhanced sensitivity to immunotherapies. Cinobufagin effectively induced PANoptosis, leading to increased immunogenic cell death, facilitated tumor-associated microglia/macrophages (TAMs) polarization towards an M1-like phenotype while augmenting CD4+/CD8 + T cell infiltration and activation. Importantly, cinobufagin combined with anti-PD-1 therapy exhibited significant synergistic effects and prolonged survival in GBM models.
These findings highlight the therapeutic potential of PANoptosis-targeting agents, such as cinobufagin, in combination with immunotherapy, offering a promising approach to convert "cold" tumors into "hot" ones and improving glioma treatment outcomes.
© 2025. The Author(s).

  • Cancer Research
  • Immunology and Microbiology

Modeling immune cell recruitment by liver endothelial cells in vitro is important to better understand the pathology of chronic inflammatory liver diseases and cancers. Here, we present a protocol for the study of monocyte transmigration across activated primary human liver endothelial cells, under physiological flow conditions. We describe primary endothelial cell isolation from human liver tissues and monocyte isolation from human blood. We then detail the shear flow-based assay and subsequent analysis of the different stages of monocyte transmigration. For complete details on the use and execution of this protocol, please refer to Wilkinson et al.1.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Endocrinology and Physiology

Early introduction of IL-10 weakens BCG revaccination's protection by suppressing CD4+Th1 cell responses.

In Journal of Translational Medicine on 4 December 2024 by Lei, Q., Fu, H., et al.

The Bacillus Calmette-Guérin (BCG) vaccine, currently the sole authorized vaccine against tuberculosis (TB), demonstrates limited effectiveness in safeguarding adolescents and adults from active TB, even when administered as a booster with either BCG itself or heterologous vaccine candidates. To effectively control the persistent epidemic of adult TB, it is imperative to investigate the mechanisms responsible for the suboptimal efficacy of the BCG prime-boosting strategy against primary Mycobacterium tuberculosis (M.tb) infection.
C57BL/6J mice were immunized with the BCG vaccine either once or twice, followed by analysis of lung tissue to assess changes in cytokine levels. Additionally, varying intervals between vaccinations and detection times were examined to study IL-10 expression across different organs. IL-10-expressing cells in the lungs, spleen, and lymph nodes were analyzed through FACS and intracellular cytokine staining (ICS). BCG-revaccinated IL-10-/- mutant mice were compared with wild-type mice to evaluate antigen-specific IgG antibody and T cell responses. Protection against M.tb aerosol challenge was evaluated in BCG-revaccinated mice, either untreated or treated with anti-IL-10R monoclonal antibody.
IL-10 was significantly upregulated in the lungs of BCG-revaccinated mice shortly after the booster immunization. IL-10 expression peaked in the lungs 3-6 weeks post-revaccination and was also detected in lymph nodes and spleen as early as 2 weeks following the booster dose, regardless of the intervals between the prime and booster vaccinations. The primary sources of IL-10 in these tissues were identified as macrophages and dendritic cells. Blocking IL-10 signaling in BCG-revaccinated mice-either by using IL-10-/- mutant mice or administering anti-IL-10R monoclonal antibody increased levels of antigen-specific IFN-γ+ or IL-2+ CD4+ T cells, enhanced central and effector memory CD4+ T cell responses, and provided better protection against aerosol infection with 300 CFUs of M.tb.
Our findings are crucial for formulating effective immunization strategies related to the BCG vaccine and for developing efficacious adult TB vaccines.
© 2024. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb