Product Citations: 9

Enhanced TLR7-dependent production of type I interferon by pDCs underlies pandemic chilblains.

In The Journal of Experimental Medicine on 7 July 2025 by Saidoune, F., Lee, D., et al.

Outbreaks of chilblains were reported during the COVID-19 pandemic. Given the essential role of type I interferon (I-IFN) in protective immunity against SARS-CoV-2 and the association of chilblains with inherited type I interferonopathies, we hypothesized that excessive I-IFN responses to SARS-CoV-2 might underlie the occurrence of chilblains in this context. We identified a transient I-IFN signature in chilblain lesions, accompanied by an acral infiltration of activated plasmacytoid dendritic cells (pDCs). Patients with chilblains were otherwise asymptomatic or had mild disease without seroconversion. Their leukocytes produced abnormally high levels of I-IFN upon TLR7 stimulation with agonists or ssRNA viruses-particularly SARS-CoV-2-but not with DNA agonists of TLR9 or the dsDNA virus HSV-1. Moreover, the patients' pDCs displayed cell-intrinsic hyperresponsiveness to TLR7 stimulation regardless of TLR7 levels. Inherited TLR7 or I-IFN deficiency confers a predisposition to life-threatening COVID-19. Conversely, our findings suggest that enhanced TLR7 activity in predisposed individuals could confer innate, pDC-mediated, sterilizing immunity to SARS-CoV-2 infection, with I-IFN-driven chilblains as a trade-off.
© 2025 Saidoune et al.

Tuberculosis in otherwise healthy adults with inherited TNF deficiency.

In Nature on 1 September 2024 by Arias, A. A., Neehus, A. L., et al.

Severe defects in human IFNγ immunity predispose individuals to both Bacillus Calmette-Guérin disease and tuberculosis, whereas milder defects predispose only to tuberculosis1. Here we report two adults with recurrent pulmonary tuberculosis who are homozygous for a private loss-of-function TNF variant. Neither has any other clinical phenotype and both mount normal clinical and biological inflammatory responses. Their leukocytes, including monocytes and monocyte-derived macrophages (MDMs) do not produce TNF, even after stimulation with IFNγ. Blood leukocyte subset development is normal in these patients. However, an impairment in the respiratory burst was observed in granulocyte-macrophage colony-stimulating factor (GM-CSF)-matured MDMs and alveolar macrophage-like (AML) cells2 from both patients with TNF deficiency, TNF- or TNFR1-deficient induced pluripotent stem (iPS)-cell-derived GM-CSF-matured macrophages, and healthy control MDMs and AML cells differentiated with TNF blockers in vitro, and in lung macrophages treated with TNF blockers ex vivo. The stimulation of TNF-deficient iPS-cell-derived macrophages with TNF rescued the respiratory burst. These findings contrast with those for patients with inherited complete deficiency of the respiratory burst across all phagocytes, who are prone to multiple infections, including both Bacillus Calmette-Guérin disease and tuberculosis3. Human TNF is required for respiratory-burst-dependent immunity to Mycobacterium tuberculosis in macrophages but is surprisingly redundant otherwise, including for inflammation and immunity to weakly virulent mycobacteria and many other infectious agents.
© 2024. The Author(s).

Leptomeningeal disease (LMD) is a devastating complication of metastatic breast cancer (MBC). In this non-therapeutic study, we enrolled 12 patients with MBC and known or suspected LMD who were undergoing a lumbar puncture as part of clinical care and collected extra cerebrospinal fluid (CSF) and a paired blood sample from each patient at a single time point. Of the 12 patients, 7 patients are confirmed to have LMD based on positive cytology and/or convincing MRI imaging (LMDpos), and 5 patients are deemed not to have LMD based on similar criteria (LMDneg). Using high-dimensional, multiplexed flow cytometry, we profile and compare the CSF and peripheral blood mononuclear cell (PBMCs) immune populations between patients with LMD and those without. Patients with LMD observe a lower overall frequency of CD45+ cells (29.51% vs. 51.12%, p < 0.05), lower frequencies of CD8+ T cells (12.03% vs. 30.40%, p < 0.01), and higher frequency of Tregs than patients without LMD. Interestingly, the frequency of partially exhausted CD8+ T cells (CD38hiTIM3lo) is ~6.5-fold higher among patients with LMD vs. those without (2.99% vs. 0.44%, p < 0.05). Taken together, these data suggest that patients with LMD may have lower overall immune infiltrates than patients without LMD, suggesting a more permissive CSF immune microenvironment but a higher frequency of partially exhausted CD8+ T cells, which may offer an important therapeutic target.
© 2023. The Author(s).

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research
  • Immunology and Microbiology
  • Neuroscience

Inherited human ITK deficiency impairs IFN-γ immunity and underlies tuberculosis.

In The Journal of Experimental Medicine on 2 January 2023 by Ogishi, M., Yang, R., et al.

Inborn errors of IFN-γ immunity can underlie tuberculosis (TB). We report three patients from two kindreds without EBV viremia or disease but with severe TB and inherited complete ITK deficiency, a condition associated with severe EBV disease that renders immunological studies challenging. They have CD4+ αβ T lymphocytopenia with a concomitant expansion of CD4-CD8- double-negative (DN) αβ and Vδ2- γδ T lymphocytes, both displaying a unique CD38+CD45RA+T-bet+EOMES- phenotype. Itk-deficient mice recapitulated an expansion of the γδ T and DN αβ T lymphocyte populations in the thymus and spleen, respectively. Moreover, the patients' T lymphocytes secrete small amounts of IFN-γ in response to TCR crosslinking, mitogens, or forced synapse formation with autologous B lymphocytes. Finally, the patients' total lymphocytes secrete small amounts of IFN-γ, and CD4+, CD8+, DN αβ T, Vδ2+ γδ T, and MAIT cells display impaired IFN-γ production in response to BCG. Inherited ITK deficiency undermines the development and function of various IFN-γ-producing T cell subsets, thereby underlying TB.
© 2022 Ogishi et al.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Impaired IL-23-dependent induction of IFN-γ underlies mycobacterial disease in patients with inherited TYK2 deficiency.

In The Journal of Experimental Medicine on 3 October 2022 by Ogishi, M., Arias, A. A., et al.

Human cells homozygous for rare loss-of-expression (LOE) TYK2 alleles have impaired, but not abolished, cellular responses to IFN-α/β (underlying viral diseases in the patients) and to IL-12 and IL-23 (underlying mycobacterial diseases). Cells homozygous for the common P1104A TYK2 allele have selectively impaired responses to IL-23 (underlying isolated mycobacterial disease). We report three new forms of TYK2 deficiency in six patients from five families homozygous for rare TYK2 alleles (R864C, G996R, G634E, or G1010D) or compound heterozygous for P1104A and a rare allele (A928V). All these missense alleles encode detectable proteins. The R864C and G1010D alleles are hypomorphic and loss-of-function (LOF), respectively, across signaling pathways. By contrast, hypomorphic G996R, G634E, and A928V mutations selectively impair responses to IL-23, like P1104A. Impairment of the IL-23-dependent induction of IFN-γ is the only mechanism of mycobacterial disease common to patients with complete TYK2 deficiency with or without TYK2 expression, partial TYK2 deficiency across signaling pathways, or rare or common partial TYK2 deficiency specific for IL-23 signaling.
© 2022 Ogishi et al.

View this product on CiteAb