Product Citations: 4

Human memory B cells show plasticity and adopt multiple fates upon recall response to SARS-CoV-2.

In Nature Immunology on 1 June 2023 by Zurbuchen, Y., Michler, J., et al.

The B cell response to different pathogens uses tailored effector mechanisms and results in functionally specialized memory B (Bm) cell subsets, including CD21+ resting, CD21-CD27+ activated and CD21-CD27- Bm cells. The interrelatedness between these Bm cell subsets remains unknown. Here we showed that single severe acute respiratory syndrome coronavirus 2-specific Bm cell clones showed plasticity upon antigen rechallenge in previously exposed individuals. CD21- Bm cells were the predominant subsets during acute infection and early after severe acute respiratory syndrome coronavirus 2-specific immunization. At months 6 and 12 post-infection, CD21+ resting Bm cells were the major Bm cell subset in the circulation and were also detected in peripheral lymphoid organs, where they carried tissue residency markers. Tracking of individual B cell clones by B cell receptor sequencing revealed that previously fated Bm cell clones could redifferentiate upon antigen rechallenge into other Bm cell subsets, including CD21-CD27- Bm cells, demonstrating that single Bm cell clones can adopt functionally different trajectories.
© 2023. The Author(s).

  • COVID-19
  • Immunology and Microbiology

Profiling Germinal Center-like B Cell Responses to Conjugate Vaccines Using Synthetic Immune Organoids.

In ACS Central Science on 26 April 2023 by Moeller, T. D., Shah, S. B., et al.

Glycoengineered bacteria have emerged as a cost-effective platform for rapid and controllable biosynthesis of designer conjugate vaccines. However, little is known about the engagement of such conjugates with naïve B cells to induce the formation of germinal centers (GC), a subanatomical microenvironment that converts naïve B cells into antibody-secreting plasma cells. Using a three-dimensional biomaterials-based B-cell follicular organoid system, we demonstrate that conjugates triggered robust expression of hallmark GC markers, B cell receptor clustering, intracellular signaling, and somatic hypermutation. These responses depended on the relative immunogenicity of the conjugate and correlated with the humoral response in vivo. The occurrence of these mechanisms was exploited for the discovery of high-affinity antibodies against components of the conjugate on a time scale that was significantly shorter than for typical animal immunization-based workflows. Collectively, these findings highlight the potential of synthetic organoids for rapidly predicting conjugate vaccine efficacy as well as expediting antigen-specific antibody discovery.
© 2023 The Authors. Published by American Chemical Society.

  • FC/FACS
  • Immunology and Microbiology

Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19.

In Cell on 7 January 2021 by Rodda, L. B., Netland, J., et al.

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is causing a global pandemic, and cases continue to rise. Most infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that could contribute to immunity. We performed a longitudinal assessment of individuals recovered from mild COVID-19 to determine whether they develop and sustain multifaceted SARS-CoV-2-specific immunological memory. Recovered individuals developed SARS-CoV-2-specific immunoglobulin (IgG) antibodies, neutralizing plasma, and memory B and memory T cells that persisted for at least 3 months. Our data further reveal that SARS-CoV-2-specific IgG memory B cells increased over time. Additionally, SARS-CoV-2-specific memory lymphocytes exhibited characteristics associated with potent antiviral function: memory T cells secreted cytokines and expanded upon antigen re-encounter, whereas memory B cells expressed receptors capable of neutralizing virus when expressed as monoclonal antibodies. Therefore, mild COVID-19 elicits memory lymphocytes that persist and display functional hallmarks of antiviral immunity.
Copyright © 2020 Elsevier Inc. All rights reserved.

  • Homo sapiens (Human)
  • COVID-19
  • Immunology and Microbiology

Mucosal-associated invariant T (MAIT) cells can be activated via either their T cell receptor (TCR), which recognizes MR1-bound pyrimidines derived from microbial riboflavin biosynthesis, or via cytokines. These two modes of activation may act in concert or independently, depending upon the stimulus. It is unknown, however, how MAIT cell responses differ with the mode of activation. Here, we define transcriptional and effector responses of human CD8+ MAIT cells to TCR and cytokine stimulation. We report that MAIT cells rapidly respond to TCR stimulation, producing multiple cytokines and chemokines, altering their cytotoxic granule content and transcription factor expression, and upregulating co-stimulatory proteins. In contrast, cytokine-mediated activation is slower and results in a more limited response. Therefore, we propose that, in infections by riboflavin-synthesizing bacteria, MAIT cells play a key early role in effecting and coordinating immune responses, while in the absence of TCR stimulation, their role is likely to differ.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology
View this product on CiteAb