Product Citations: 5

Topical TYK2 inhibitor ameliorates psoriasis-like dermatitis via the AKT-SP1-NGFR-AP1 pathway in keratinocytes.

In Clinical and Translational Medicine on 1 March 2025 by Fang, Z., Jiang, R., et al.

Tyrosine kinase 2 (TYK2)-dependent cytokine signalling is integral to the pathogenesis of psoriasis. While BMS-986165, a highly selective TYK2 inhibitor, has recently been approved for oral treatment of psoriasis, its therapeutic potential via topical application remains unexplored.
We aim to investigate the efficacy of topically applying TYK2 inhibitor in psoriasis and to elucidate the underlying mechanisms driving the therapeutic effects of this delivery approach.
1.5% BMS-986165 ointment was applied topically to the back skin of imiquimod (IMQ)-induced psoriatic mice. To identify potential target cells influenced by the topical TYK2 inhibitor, we performed single cell RNA sequencing (scRNA-seq) and flow cytometry on mouse lesions. The role of TYK2 in vitro was assessed by silencing its expression or administering BMS-986165 in human keratinocytes (KCs). Mechanistic insights into TYK2 function in KCs were further investigated using RNA-seq, dual luciferase reporter assay and ChIP-qPCR.
External use of 1.5% BMS-986165 ointment significantly ameliorated the IMQ-induced psoriasis-like dermatitis. Importantly, topical TYK2 inhibitor attenuated proinflammatory capability of KCs. In vitro, TYK2 inhibition suppressed the transcription of nerve growth factor receptor (NGFR) by disrupting the AKT-SP1 signalling pathway. This impairment hindered the activation of activator protein 1 (AP1), thereby weakening the proinflammatory potential of KCs.
This study reveals a novel therapeutic potential for selective TYK2 inhibitor in topical manner on psoriasis therapy, which might prompt the development of topical treatment for psoriasis. Crucially, our findings provide an underexplored regulatory mechanism of TYK2 inhibitor in psoriasis.
Topical TYK2 inhibitor alleviates psoriasis-like dermatitis. Topical TYK2 inhibitor reduces psoriasis progression through restraining the inflammatory responses of keratinocytes. The inhibition of TYK2 regulates the inflammatory response of keratinocytes through AKT-SP1-NGFR-AP1 pathway.
© 2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

Allosteric inhibition of CXCR1 and CXCR2 abrogates Th2/Th17-associated Allergic Lung Inflammation in Mice

Preprint on BioRxiv : the Preprint Server for Biology on 15 May 2024 by Hosoki, K., Govindhan, A., et al.

Background IL4, IL5, IL13, and IL17-producing CD4 T helper 2 (Th2)-cells and IL17-producing CD4 T helper 17 (Th17)-cells contribute to chronic eosinophilic and neutrophilic airway inflammation in asthma and allergic airway inflammation. Chemokines and their receptors are upregulated in Th2/Th17-mediated inflammation. However, the ability of CXCR1 and CXCR2 modulate Th2 and Th17-cell-mediated allergic lung inflammation has not been reported. Methods Mice sensitized and challenged with cat dander extract (CDE) mount a vigorous Th2-Th17-mediated allergic lung inflammation. Allosteric inhibitor of CXCR1 and CXCR2, ladarixin was orally administered in this model. The ability of ladarixin to modulate allergen-challenge induced recruitment of CXCR1 and CXCR2-expressing Th2 and Th17-cells and allergic lung inflammation were examined. Results Allergen challenge in sensitized mice increased mRNA expression levels of Il4, Il5, Il13, Il6, Il1β, Tgfβ1, Il17, Il23, Gata3, and Rorc , and induced allergic lung inflammation characterized by recruitment of CXCR1- and CXCR2-expressing Th2-cells, Th17-cells, neutrophils, and eosinophils. Allosteric inhibition of CXCR1 and CXCR2 vigorously blocked each of these pro-inflammatory effects of allergen challenge. CXCL chemokines induced a CXCR1 and CXCR2-dependent proliferation of IL4, IL5, IL13, and IL17 expressing T-cells. Conclusion Allosteric inhibition of CXCR1 and CXCR2 abrogates blocks recruitment of CXCR1- and CXCR2-expressing Th2-cells, Th17-cells, neutrophils, and eosinophils in this mouse model of allergic lung inflammation. We suggest that the ability of allosteric inhibition of CXCR1 and CXCR2 to abrogate Th2 and Th17-mediated allergic inflammation should be investigated in humans.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Bile acids (BAs) affect the intestinal environment by ensuring barrier integrity, maintaining microbiota balance, regulating epithelium turnover, and modulating the immune system. As a master regulator of BA homeostasis, farnesoid X receptor (FXR) is severely compromised in patients with inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). At the front line, gut macrophages react to the microbiota and metabolites that breach the epithelium. We aim to study the role of the BA/FXR axis in macrophages. This study demonstrates that inflammation-induced epithelial abnormalities compromised FXR signaling and altered BAs' profile in a mouse CAC model. Further, gut macrophage-intrinsic FXR sensed aberrant BAs, leading to pro-inflammatory cytokines' secretion, which promoted intestinal stem cell proliferation. Mechanistically, activation of FXR ameliorated intestinal inflammation and inhibited colitis-associated tumor growth, by regulating gut macrophages' recruitment, polarization, and crosstalk with Th17 cells. However, deletion of FXR in bone marrow or gut macrophages escalated the intestinal inflammation. In summary, our study reveals a distinctive regulatory role of FXR in gut macrophages, suggesting its potential as a therapeutic target for addressing IBD and CAC.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Abnormal lipid metabolism in epidermal Langerhans cells mediates psoriasis-like dermatitis.

In JCI Insight on 8 July 2022 by Zhang, X., Li, X., et al.

Psoriasis is a chronic, inflammatory skin disease, frequently associated with dyslipidemia. Lipid disturbance in psoriasis affects both circulatory system and cutaneous tissue. Epidermal Langerhans cells (LCs) are tissue-resident DCs that maintain skin immune surveillance and mediate various cutaneous disorders, including psoriasis. However, the role of LCs in psoriasis development and their lipid metabolic alternation remains unclear. Here, we demonstrate that epidermal LCs of psoriasis patients enlarge with longer dendrites and possess elevated IL-23p19 mRNA and a higher level of neutral lipids when compared with normal LCs of healthy individuals. Accordantly, epidermal LCs from imiquimod-induced psoriasis-like dermatitis in mice display overmaturation, enhanced phagocytosis, and excessive secretion of IL-23. Remarkably, these altered immune properties in lesional LCs are tightly correlated with elevated neutral lipid levels. Moreover, the increased lipid content of psoriatic LCs might result from impaired autophagy of lipids. Bulk RNA-Seq analysis identifies dysregulated genes involved in lipid metabolism, autophagy, and immunofunctions in murine LCs. Overall, our data suggest that dysregulated lipid metabolism influences LC immunofunction, which contributes to the development of psoriasis, and therapeutic manipulation of this metabolic process might provide an effective measurement for psoriasis.

  • FC/FACS
  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Cell Biology

Myeloid apolipoprotein E controls dendritic cell antigen presentation and T cell activation.

In Nature Communications on 6 August 2018 by Bonacina, F., Coe, D., et al.

Cholesterol homeostasis has a pivotal function in regulating immune cells. Here we show that apolipoprotein E (apoE) deficiency leads to the accumulation of cholesterol in the cell membrane of dendritic cells (DC), resulting in enhanced MHC-II-dependent antigen presentation and CD4+ T-cell activation. Results from WT and apoE KO bone marrow chimera suggest that apoE from cells of hematopoietic origin has immunomodulatory functions, regardless of the onset of hypercholesterolemia. Humans expressing apoE4 isoform (ε4/3-ε4/4) have increased circulating levels of activated T cells compared to those expressing WT apoE3 (ε3/3) or apoE2 isoform (ε2/3-ε2/2). This increase is caused by enhanced antigen-presentation by apoE4-expressing DCs, and is reversed when these DCs are incubated with serum containing WT apoE3. In summary, our study identifies myeloid-produced apoE as a key physiological modulator of DC antigen presentation function, paving the way for further explorations of apoE as a tool to improve the management of immune diseases.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb