Product Citations: 7

Novel method for detection of Aβ and Iso-D7-Aβ N-terminus-specific B cells and Iso-D7-Aβ-specific antibodies.

In Biology Methods and Protocols on 20 January 2025 by Kolobova, E. A., Petrushanko, I. Y., et al.

Alzheimer's disease (AD) is a multifactorial systemic disease that is triggered, at least in part, by the accumulation of β-amyloid (Aβ) peptides in the brain, but it also depends on immune system-mediated regulation. Recent studies suggest that B cells may play a role in AD development and point to the accumulation of clonally expanded B cells in AD patients. However, the specificity of the clonally expanded B cells is unknown, and the contribution of Aβ-specific B cells to AD pathology development is unclear. In this study, we have developed a novel method to identify Aβ-specific B cells by flow cytometry using fluorescent tetramers. The suggested method also enables the identification of B-cell clones specific to a more pathology-provoking form of Aβ with an isomerized Asp7 residue (Iso-D7-Aβ) that accumulates in elderly people and in AD patients. The method has been verified using mice immunized with antigens containing the isomerized or non-isomerized Aβ N-terminus peptides. In addition, we describe a new method for the detection of Iso-D7-Aβ-specific antibodies, which was tested on mouse serum. These methods are of potential importance in research aimed at studying AD and may be also utilized for diagnostic and therapeutic purposes.
© The Author(s) 2025. Published by Oxford University Press.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

A vaccine targeting antigen-presenting cells through CD40 induces protective immunity against Nipah disease.

In Cell Reports Medicine on 19 March 2024 by Pastor, Y., Reynard, O., et al.

Nipah virus (NiV) has been recently ranked by the World Health Organization as being among the top eight emerging pathogens likely to cause major epidemics, whereas no therapeutics or vaccines have yet been approved. We report a method to deliver immunogenic epitopes from NiV through the targeting of the CD40 receptor of antigen-presenting cells by fusing a selected humanized anti-CD40 monoclonal antibody to the Nipah glycoprotein with conserved NiV fusion and nucleocapsid peptides. In the African green monkey model, CD40.NiV induces specific immunoglobulin A (IgA) and IgG as well as cross-neutralizing responses against circulating NiV strains and Hendra virus and T cell responses. Challenge experiments using a NiV-B strain demonstrate the high protective efficacy of the vaccine, with all vaccinated animals surviving and showing no significant clinical signs or virus replication, suggesting that the CD40.NiV vaccine conferred sterilizing immunity. Overall, results obtained with the CD40.NiV vaccine are highly promising in terms of the breadth and efficacy against NiV.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

TRAPnSeq allows high-throughput profiling of antigen-specific antibody-secreting cells.

In Cell Rep Methods on 24 July 2023 by Asrat, S., Devlin, J. C., et al.

Following activation by cognate antigen, B cells undergo fine-tuning of their antigen receptors and may ultimately differentiate into antibody-secreting cells (ASCs). While antigen-specific B cells that express surface receptors (B cell receptors [BCRs]) can be readily cloned and sequenced following flow sorting, antigen-specific ASCs that lack surface BCRs cannot be easily profiled. Here, we report an approach, TRAPnSeq (antigen specificity mapping through immunoglobulin [Ig] secretion TRAP and Sequencing), that allows capture of secreted antibodies on the surface of ASCs, which in turn enables high-throughput screening of single ASCs against large antigen panels. This approach incorporates flow cytometry, standard microfluidic platforms, and DNA-barcoding technologies to characterize antigen-specific ASCs through single-cell V(D)J, RNA, and antigen barcode sequencing. We show the utility of TRAPnSeq by profiling antigen-specific IgG and IgE ASCs from both mice and humans and highlight its capacity to accelerate therapeutic antibody discovery from ASCs.
© 2023 The Authors.

  • Immunology and Microbiology

MAIT cells activate dendritic cells to promote TFH cell differentiation and induce humoral immunity.

In Cell Reports on 25 April 2023 by Pankhurst, T. E., Buick, K. H., et al.

Protective immune responses against respiratory pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, are initiated by the mucosal immune system. However, most licensed vaccines are administered parenterally and are largely ineffective at inducing mucosal immunity. The development of safe and effective mucosal vaccines has been hampered by the lack of a suitable mucosal adjuvant. In this study we explore a class of adjuvant that harnesses mucosal-associated invariant T (MAIT) cells. We show evidence that intranasal immunization of MAIT cell agonists co-administered with protein, including the spike receptor binding domain from SARS-CoV-2 virus and hemagglutinin from influenza virus, induce protective humoral immunity and immunoglobulin A production. MAIT cell adjuvant activity is mediated by CD40L-dependent activation of dendritic cells and subsequent priming of T follicular helper cells. In summary, we show that MAIT cells are promising vaccine targets that can be utilized as cellular adjuvants in mucosal vaccines.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

Vaccine-associated enhanced respiratory disease (VAERD) was previously observed in some preclinical models of severe acute respiratory syndrome (SARS) and MERS coronavirus vaccines. We used the SARS coronavirus 2 (SARS-CoV-2) mouse-adapted, passage 10, lethal challenge virus (MA10) mouse model of acute lung injury to evaluate the immune response and potential for immunopathology in animals vaccinated with research-grade mRNA-1273. Whole-inactivated virus or heat-denatured spike protein subunit vaccines with alum designed to elicit low-potency antibodies and Th2-skewed CD4+ T cells resulted in reduced viral titers and weight loss post challenge but more severe pathological changes in the lung compared to saline-immunized animals. In contrast, a protective dose of mRNA-1273 induced favorable humoral and cellular immune responses that protected from viral replication in the upper and lower respiratory tract upon challenge. A subprotective dose of mRNA-1273 reduced viral replication and limited histopathological manifestations compared to animals given saline. Overall, our findings demonstrate an immunological signature associated with antiviral protection without disease enhancement following vaccination with mRNA-1273.
Published by Elsevier Inc.

  • COVID-19
  • Genetics
  • Immunology and Microbiology
View this product on CiteAb