Product Citations: 2

Chronic hyperglycemia drives alterations in macrophage effector function in pulmonary tuberculosis.

In European Journal of Immunology on 1 October 2022 by Panda, S., Seelan, D. M., et al.

Diabetes mellitus (DM) alters immune responses and given the rising prevalence of DM in tuberculosis (TB) endemic countries; hyperglycemia can be a potential risk factor for active TB development. However, the impact of hyperglycemia on TB-specific innate immune response in terms of macrophage functions remains poorly addressed. We assessed macrophage effector functions in uncontrolled DM patients with or without TB infection (PTB+DM and DM), non-diabetic TB patients (PTB), and non-diabetic-uninfected controls. Phagocytic capacity against BCG and surface expression of different pattern recognition receptors (PRRs) (CD11b, CD14, CD206, MARCO, and TLR-2) were measured via flow cytometry. Effector molecules (ROS and NO) required for bacterial killing were assessed via DCFDA and Griess reaction respectively. A systematic dysregulation in phagocytic capacity with concurrent alterations in the expression pattern of key PRRs (CD11b, MARCO, and CD206) was observed in PTB+DM. These altered PRR expressions were associated with decreased phagocytic capacity of macrophages. Similarly, ROS was aberrantly higher while NO was lower in PTB+DM. These altered macrophage functions were positively correlated with increasing disease severity. Our results highlight several key patterns of immune dysregulation against TB infection under hyperglycemic conditions and highlight a negative impact of hyperglycemia with etiology and progression of TB.
© 2022 Wiley-VCH GmbH.

  • Cardiovascular biology
  • Immunology and Microbiology

Fc-mediated effector function contributes to the in vivo antiviral effect of an HIV neutralizing antibody.

In Proceedings of the National Academy of Sciences of the United States of America on 4 August 2020 by Asokan, M., Dias, J., et al.

Treatment of HIV infection with either antiretroviral (ARV) therapy or neutralizing monoclonal antibodies (NAbs) leads to a reduction in HIV plasma virus. Both ARVs and NAbs prevent new rounds of viral infection, but NAbs may have the additional capacity to accelerate the loss of virus-infected cells through Fc gamma receptor (FcγR)-mediated effector functions, which should affect the kinetics of plasma-virus decline. Here, we formally test the role of effector function in vivo by comparing the rate and timing of plasma-virus clearance in response to a single-dose treatment with either unmodified NAb or those with either reduced or augmented Fc function. When infused into viremic simian HIV (SHIV)-infected rhesus macaques, there was a 21% difference in slope of plasma-virus decline between NAb and NAb with reduced Fc function. NAb engineered to increase FcγRIII binding and improve antibody-dependent cellular cytotoxicity (ADCC) in vitro resulted in arming of effector cells in vivo, yet led to viral-decay kinetics similar to NAbs with reduced Fc function. These studies show that the predominant mechanism of antiviral activity of HIV NAbs is through inhibition of viral entry, but that Fc function can contribute to the overall antiviral activity, making them distinct from standard ARVs.

View this product on CiteAb