Product Citations: 37

Lymphatic activation of ACKR3 signaling regulates lymphatic response after ischemic heart injury

Preprint on BioRxiv : the Preprint Server for Biology on 7 December 2024 by Bálint, L., Patel, S., et al.

2. Background Ischemic heart disease is a prevalent cause of death and disability worldwide. Recent studies reported a rapid expansion of the cardiac lymphatic network upon ischemic heart injury and proposed that cardiac lymphatics may attenuate tissue edema and inflammatory mechanisms after ischemic heart injury. Nevertheless, the mechanisms through which hypoxic conditions affect cardiac lymphangiogenesis and function remain unclear. Here, we aimed to characterize the role of the adrenomedullin decoy receptor atypical chemokine receptor 3 (ACKR3) in the lymphatic response following ischemic heart injury. Methods Spatial assessment of ACKR3 signaling in the heart after ischemic heart injury was conducted using ACKR3-TangoGFP reporter mice. Roles of ACKR3 after ischemic heart injury were characterized in Ackr3 ΔLyve 1 mice and in cultured human lymphatic endothelial cells (LECs) exposed to hypoxia. Results Using the novel ACKR3-Tango-GFP reporter mice, we detected activation of ACKR3 signaling in cardiac lymphatics adjacent to the site of ischemic injury of left anterior descending artery (LAD) ligation. Ackr3 ΔLyve 1 mice exhibited better survival and were protected from the formation of acute tissue edema after ischemic cardiac injury. Ackr3 ΔLyve 1 mice exhibited a denser cardiac lymphatic network after LAD ligation, especially in the injured tissues. Transcriptomic analysis revealed changes in cardiac lymphatic gene expression patterns that have been associated with extracellular matrix remodeling and immune activation. We also found that ACKR3 plays a critical role in the regulating continuous cell-cell junction dynamics in LECs under hypoxic conditions. Conclusions Lymphatic expression of ACKR3 governs numerous processes following ischemic heart injury, including the lymphangiogenic response, edema protection and overall survival. These results expand our understanding of how the heart failure biomarker adrenomedullin, regulated by lymphatic ACKR3, may exert its cardioprotective roles after ischemic cardiac injury.

  • Mus musculus (House mouse)
  • Cardiovascular biology

Single-cell RNA-seq reveals a resolving immune phenotype in the oral mucosa.

In IScience on 20 September 2024 by Cantalupo, P., Diacou, A., et al.

The oral mucosa is the interface between the host immune response and the oral microbiota. In periodontal disease, the microbial plaque elicits a tissue-destructive immune response. Removal of the microbial stimulus initiates active resolution of inflammatory. Here, we use single-cell RNA-sequencing (scRNA-seq) to characterize the immune response within the oral mucosa across three distinct conditions of periodontal health, disease, and resolution in mice. We report gene expression shifts across the three conditions are driven by macrophage and neutrophils and identify a unique gene signature that characterizes resolution of disease. Macrophage subgroups are identified that demonstrate differential expansion across conditions, including a subgroup that expands during resolution with an immunoregulatory gene signature and enriched for surface marker Cd74. We validate expansion of this subgroup during resolution via flow cytometry. This work presents a robust single-cell dataset of immunological changes in the oral mucosa and identifies a resolution-associated macrophage phenotype in mucosal immunity.
© 2024 The Author(s).

  • Mus musculus (House mouse)
  • Genetics
  • Immunology and Microbiology

Adjuvant COX inhibition augments STING signaling and cytolytic T cell infiltration in irradiated 4T1 tumors.

In JCI Insight on 21 May 2024 by Ridnour, L. A., Cheng, R. Y., et al.

Immune therapy is the new frontier of cancer treatment. Therapeutic radiation is a known inducer of immune response and can be limited by immunosuppressive mediators including cyclooxygenase-2 (COX2) that is highly expressed in aggressive triple negative breast cancer (TNBC). A clinical cohort of TNBC tumors revealed poor radiation therapeutic efficacy in tumors expressing high COX2. Herein, we show that radiation combined with adjuvant NSAID (indomethacin) treatment provides a powerful combination to reduce both primary tumor growth and lung metastasis in aggressive 4T1 TNBC tumors, which occurs in part through increased antitumor immune response. Spatial immunological changes including augmented lymphoid infiltration into the tumor epithelium and locally increased cGAS/STING1 and type I IFN gene expression were observed in radiation-indomethacin-treated 4T1 tumors. Thus, radiation and adjuvant NSAID treatment shifts "immune desert phenotypes" toward antitumor M1/TH1 immune mediators in these immunologically challenging tumors. Importantly, radiation-indomethacin combination treatment improved local control of the primary lesion, reduced metastatic burden, and increased median survival when compared with radiation treatment alone. These results show that clinically available NSAIDs can improve radiation therapeutic efficacy through increased antitumor immune response and augmented local generation of cGAS/STING1 and type I IFNs.

  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Tissue-resident macrophages specifically express Lactotransferrin and Vegfc during ear pinna regeneration in spiny mice.

In Developmental Cell on 26 February 2024 by Simkin, J., Aloysius, A., et al.

The details of how macrophages control different healing trajectories (regeneration vs. scar formation) remain poorly defined. Spiny mice (Acomys spp.) can regenerate external ear pinnae tissue, whereas lab mice (Mus musculus) form scar tissue in response to an identical injury. Here, we used this dual species system to dissect macrophage phenotypes between healing modes. We identified secreted factors from activated Acomys macrophages that induce a pro-regenerative phenotype in fibroblasts from both species. Transcriptional profiling of Acomys macrophages and subsequent in vitro tests identified VEGFC, PDGFA, and Lactotransferrin (LTF) as potential pro-regenerative modulators. Examining macrophages in vivo, we found that Acomys-resident macrophages secreted VEGFC and LTF, whereas Mus macrophages do not. Lastly, we demonstrate the requirement for VEGFC during regeneration and find that interrupting lymphangiogenesis delays blastema and new tissue formation. Together, our results demonstrate that cell-autonomous mechanisms govern how macrophages react to the same stimuli to differentially produce factors that facilitate regeneration.
Copyright © 2024 Elsevier Inc. All rights reserved.

  • Stem Cells and Developmental Biology

The hepatoprotective effect of interleukin 22 (IL-22) has been reported in several models of liver injuries, including alcohol-associated liver disease (ALD). However, the intestinal role of IL-22 in alcoholic hepatitis remains to be elucidated.
Intestinal IL-22 levels were measured in mice fed with alcohol for 8 weeks. IL-22 was then administered to alcohol-fed mice to test its protective effects on alleviating alcoholic hepatitis, focusing on intestinal protection. Acute IL-22 treatment was conducted in mice to further explore the link between IL-22 and the induction of antimicrobial peptide (AMP). Intestinal epithelial cell-specific knockout of signal transducer and activator of transcription 3 (STAT3) mice were generated and used for organoid study to explore its role in IL-22-mediated AMP expression and gut barrier integrity.
After alcohol feeding for 8 weeks, the intestinal levels of IL-22 were significantly reduced in mice. IL-22 treatment to alcohol-fed mice mitigated liver injury as indicated by normalized serum transaminase levels, improved liver histology, reduced lipid accumulation, and attenuated inflammation. In the intestine, alcohol-reduced Reg3γ and α-defensins levels were reversed by IL-22 treatment. IL-22 also improved gut barrier integrity and decreased endotoxemia in alcohol-fed mice. While alcohol feeding significantly reduced Akkermansia, IL-22 administration dramatically expanded this commensal bacterium in mice. Regardless of alcohol, acute IL-22 treatment induced a fast and robust induction of intestinal AMPs and STAT3 activation. By using in vitro cultured intestinal organoids isolated from WT mice and mice deficient in intestinal epithelial-STAT3, we further demonstrated that STAT3 is required for IL-22-mediated AMP expression. In addition, IL-22 also regulates intestinal epithelium differentiation as indicated by direct regulation of sodium-hydrogen exchanger 3 via STAT3.
Our study suggests that IL-22 not only targets the liver but also benefits the intestine in many aspects. The intestinal effects of IL-22 include regulating AMP expression, microbiota, and gut barrier function that is pivotal in ameliorating alcohol induced translocation of gut-derived bacterial pathogens and liver inflammation.
Copyright © 2023 Yue, Wei, Hao, Dong, Guo, Sun, Zhao, Zhou and Zhong.

  • IHC-IF
  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb