Product Citations: 5

As an alternative pathway for liver regeneration, liver progenitor cells and their derived ductular reaction cells increase during the progression of many chronic liver diseases. However, the mechanism underlying their hepatocyte repopulation after liver injury remains unknown. Here, we conducted progenitor cell lineage tracing in mice and found that fewer than 2% of hepatocytes were derived from liver progenitor cells after 9 weeks of injury with a choline-deficient diet supplemented with ethionine (CDE), and this percentage increased approximately three-fold after 3 weeks of recovery. We also found that the proportion of liver progenitor cells double positive for the ligand of glucocorticoid-induced tumour necrosis factor receptor (GITRL, also called Tnfsf18) and SRY-related HMG box transcription 9 (Sox9) among nonparenchymal cells increased time-dependently upon CDE injury and reduced after recovery. When GITRL was conditionally knocked out from hepatic progenitor cells, its expression in nonparenchymal cells was downregulated by approximately fifty percent, and hepatocyte repopulation increased by approximately three folds. Simultaneously, conditional knockout of GITRL reduced the proportion of liver-infiltrating CD8+ T lymphocytes and glucocorticoid-induced tumour necrosis factor receptor (GITR)-positive CD8+ T lymphocytes. Mechanistically, GITRL stimulated cell proliferation but suppressed the differentiation of liver progenitor organoids into hepatocytes, and CD8+ T cells further reduced their hepatocyte differentiation by downregulating the Wnt/β-catenin pathway. Therefore, GITRL expressed by liver progenitor cells impairs hepatocyte differentiation, thus hindering progenitor cell-mediated liver regeneration.
© 2024. The Author(s).

  • FC/FACS
  • Cell Biology
  • Immunology and Microbiology

Human lung organoids (hLOs) are useful for disease modelling and drug screening. However, a lack of immune cells in hLOs limits the recapitulation of in vivo cellular physiology. Here, we generated hLOs containing alveolar macrophage (AMφ)-like cells derived from pluripotent stem cells (PSC). To bridge hLOs with advanced human lung high-resolution X-ray computed tomography (CT), we acquired quantitative micro-CT images. Three hLO types were observed during differentiation. Among them, alveolar hLOs highly expressed not only lung epithelial cell markers but also AMφ-specific markers. Furthermore, CD68+ AMφ-like cells were spatially organized on the luminal epithelial surface of alveolar hLOs. Bleomycin-treated alveolar hLOs showed upregulated expression of fibrosis-related markers and extracellular matrix deposits in the alveolar sacs. Alveolar hLOs also showed structural alterations such as excessive tissue fraction under bleomycin treatment. Therefore, we suggest that micro-CT analyzable PSC-derived alveolar hLOs are a promising in vitro model to predict lung toxicity manifestations, including fibrosis.
© 2022. The Author(s), under exclusive licence to Springer Nature B.V.

  • FC/FACS
  • Cardiovascular biology
  • Immunology and Microbiology

Identification of the best housekeeping gene for RT-qPCR analysis of human pancreatic organoids.

In PLoS ONE on 9 December 2021 by Cherubini, A., Rusconi, F., et al.

In the last few years, there has been a considerable increase in the use of organoids, which is a new three-dimensional culture technology applied in scientific research. The main reasons for their extensive use are their plasticity and multiple applications, including in regenerative medicine and the screening of new drugs. The aim of this study was to better understand these structures by focusing on the choice of the best housekeeping gene (HKG) to perform accurate molecular analysis on such a heterogeneous system. This feature should not be underestimated because the inappropriate use of a HKG can lead to misleading data and incorrect results, especially when the subject of the study is innovative and not totally explored like organoids. We focused our attention on the newly described human pancreatic organoids (hPOs) and compared 12 well-known HKGs (ACTB, B2M, EF1α, GAPDH, GUSB, HPRT, PPIA, RNA18S, RPL13A TBP, UBC and YWHAZ). Four different statistical algorithms (NormFinder, geNorm, BestKeeper and ΔCt) were applied to estimate the expression stability of each HKG, and RefFinder was used to identify the most suitable genes for RT-qPCR data normalization. Our results showed that the intragroup and intergroup comparisons could influence the best choice of the HKG, making clear that the identification of a stable reference gene for accurate and reproducible RT-qPCR data normalization remains a critical issue. In summary, this is the first report on HKGs in human organoids, and this work provides a strong basis to pave the way for further gene analysis in hPOs.

  • FC/FACS

Blocking TNFα attenuates progressive cartilage matrix degradation in inflammatory arthritis.

In Experimental and Therapeutic Medicine on 1 August 2021 by Park, J., Park, H., et al.

Because damage to hyaline cartilage is irreversible, relieving progressive cartilage destruction is an important therapeutic approach for inflammatory arthritis. In the present study, human hyaline chondrocytes were isolated from total knee replacements of 15 patients with osteoarthritis (OA) and three with rheumatoid arthritis (RA). Synovial fluid of OA (n=25) and RA (n=34) were collected to measure tumor necrosis factor α (TNFα) using ELISA. Consistent with previous studies, the synovial fluid exhibited high TNFα levels and hyaline cartilage was severely destroyed in patients with RA. TNFα-treated chondrocytes were used as model for inflammatory arthritis. TNFα did not influence proliferation or extracellular matrix expression in chondrocytes, but induced matrix metalloproteinase (MMP)1, 3 and 13 expression levels in chondrocytes, which was accompanied by activation of nuclear factor-κB signaling. During chondrogenic differentiation, TNFα attenuated mRNA expression levels of anabolic factors (collagen type 2 and aggrecan) and enhanced mRNA expression of catabolic factors (MMP1, MMP3 and MMP13) in chondrocytes. Moreover, anti-TNFα agents (Golimumab) inhibited the TNFα-induced metabolic shift in chondrocytes and chondrogenic differentiation. The present study revealed a mechanism by which TNFα may induce metabolic shift in chondrocytes, leading to progressive chondrocyte destruction.
Copyright: © Park et al.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Cell type-specific isolation and transcriptomic profiling informs glial pathology in human temporal lobe epilepsy

Preprint on BioRxiv : the Preprint Server for Biology on 12 December 2020 by Tome-Garcia, J., Nudelman, G., et al.

h4>SUMMARY/h4> The pathophysiology of epilepsy underlies complex network dysfunction, the cell-type-specific contributions of which remain poorly defined in human disease. In this study, we developed a strategy that simultaneously isolates neuronal, astrocyte and oligodendroglial progenitor (OPC)-enriched nuclei from human fresh-frozen neocortex and applied it to characterize the distinct transcriptome of each cell type in temporal lobe epilepsy (TLE) surgical samples. Differential RNA-seq analysis revealed several dysregulated pathways in neurons, OPCs, and astrocytes, and disclosed an immature phenotype switch in TLE astrocytes. An independent single cell RNA-seq TLE dataset uncovered a hybrid population of cells aberrantly co-expressing canonical astrocyte and OPC-like progenitor markers (GFAP+OLIG2+ glia), which we corroborated in-situ in human TLE samples, and further demonstrated their emergence after chronic seizure injury in a mouse model of status epilepticus. In line with their immature signature, a subset of human TLE glia were also abnormally proliferative, both in-vivo and in-vitro. Generally, this analysis validates the utility of the proposed cell type-specific isolation strategy to study glia-specific changes ex vivo using fresh-frozen human samples, and specifically, it delineates an aberrant glial phenotype in human TLE specimens.

  • Neuroscience
  • Pathology
View this product on CiteAb