Product Citations: 4

Apolipoprotein E is a marker of all chondrocytes in the growth plate resting zone.

In Bone Research on 3 March 2025 by Kodama, J., Oichi, T., et al.

The resting zone (RZ) in mammalian growth plates is critical for maintaining and regulating chondrocyte turnover during longitudinal bone growth as a control tower and stem cell reservoir. Although recent lineage tracing studies have identified several markers for stem cells in the RZ, these markers only partially label chondrocytes in the RZ, suggesting that the resting chondrocytes (RCs) are a heterogeneous population with different types of stem cells. Since a comprehensive marker for RCs is still lacking, the RZ is generally determined based on ambiguous histological criteria, such as small and round chondrocytes without columnar formation, which may lead to inconsistencies among researchers. Therefore, in this study, we used single-cell RNA sequencing (scRNAseq) of growth plate chondrocytes followed by validation by fluorescence in situ hybridization (FISH) to precisely annotate cell clusters in scRNAseq and search for a marker of RCs. The scRNAseq analysis revealed that apolipoprotein E (Apoe) was the top-hit gene, which was ubiquitously expressed in the RC cluster. FISH confirmed that Apoe was exclusively localized to the histologically defined RZ. In newly generated ApoemCherry knock-in mice, we further confirmed that mCherry expression mirrored the distribution of Apoe-expressing chondrocytes in the RZ particularly after the formation of the secondary ossification center. These mCherry+ RCs were slow cycling in vivo and exhibited stem cell properties in vitro. Moreover, APOE was detected in human growth plate RCs. These findings suggest that apolipoprotein E is a novel pan-RC marker in both mouse and human growth plates.
© 2025. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)

Apolipoprotein E is a novel marker for chondrocytes in the growth plate resting zone

Preprint on Research Square on 5 August 2024 by Otsuru, S., Kodama, J., et al.

Abstract The resting zone (RZ) in mammalian growth plates is critical for maintaining and regulating chondrocyte turnover during longitudinal bone growth as a control tower and stem cell reservoir. Although recent lineage tracing studies have identified several markers for stem cells in the RZ, these markers only partially label chondrocytes in the RZ, suggesting that the resting chondrocytes (RCs) are a heterogeneous population with different types of stem cells. Since a comprehensive marker for RCs is still lacking, the RZ is generally determined based on ambiguous histological criteria, such as small and round chondrocytes without columnar formation, which may lead to inconsistencies among researchers. Therefore, in this study, we used single-cell RNA sequencing (scRNAseq) of growth plate chondrocytes followed by validation by fluorescence in situ hybridization (FISH) to precisely annotate cell clusters in scRNAseq and search for a marker of RCs. The scRNAseq analysis revealed that apolipoprotein E (Apoe) was the top-hit gene, which was ubiquitously expressed in the RC cluster. FISH confirmed that Apoe was exclusively localized to the histologically defined RZ. In newly generated Apoe-mCherry knock-in mice, we further confirmed that mCherry expression mirrored the distribution of Apoe-expressing chondrocytes in the RZ particularly after the formation of the secondary ossification center. These mCherry+ RCs were slow cycling in vivo and exhibited stem cell properties both in vitro and in vivo. Moreover, APOE was detected in human growth plate RCs. These findings suggest that Apoe is a novel pan-RC marker in both mouse and human growth plates.

  • Mus musculus (House mouse)

Antigen dominance hierarchies shape TCF1+ progenitor CD8 T cell phenotypes in tumors.

In Cell on 16 September 2021 by Burger, M. L., Cruz, A. M., et al.

CD8 T cell responses against different tumor neoantigens occur simultaneously, yet little is known about the interplay between responses and its impact on T cell function and tumor control. In mouse lung adenocarcinoma, we found that immunodominance is established in tumors, wherein CD8 T cell expansion is predominantly driven by the antigen that most stably binds MHC. T cells responding to subdominant antigens were enriched for a TCF1+ progenitor phenotype correlated with response to immune checkpoint blockade (ICB) therapy. However, the subdominant T cell response did not preferentially benefit from ICB due to a dysfunctional subset of TCF1+ cells marked by CCR6 and Tc17 differentiation. Analysis of human samples and sequencing datasets revealed that CCR6+ TCF1+ cells exist across human cancers and are not correlated with ICB response. Vaccination eliminated CCR6+ TCF1+ cells and dramatically improved the subdominant response, highlighting a strategy to optimally engage concurrent neoantigen responses against tumors.
Copyright © 2021 Elsevier Inc. All rights reserved.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Most current tumor immunotherapy strategies leverage cytotoxic CD8+ T cells. Despite evidence for clinical potential of CD4+ tumor-infiltrating lymphocytes (TILs), their functional diversity limits our ability to harness their activity. Here, we use single-cell mRNA sequencing to analyze the response of tumor-specific CD4+ TILs and draining lymph node (dLN) T cells. Computational approaches to characterize subpopulations identify TIL transcriptomic patterns strikingly distinct from acute and chronic anti-viral responses and dominated by diversity among T-bet-expressing T helper type 1 (Th1)-like cells. In contrast, the dLN response includes T follicular helper (Tfh) cells but lacks Th1 cells. We identify a type I interferon-driven signature in Th1-like TILs and show that it is found in human cancers, in which it is negatively associated with response to checkpoint therapy. Our study provides a proof-of-concept methodology to characterize tumor-specific CD4+ T cell effector programs. Targeting these programs should help improve immunotherapy strategies.
Published by Elsevier Inc.

  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb