Product Citations: 3

Prevention and treatment of peri-implant fibrosis by functionally inhibiting skeletal cells expressing the leptin receptor.

In Nature Biomedical Engineering on 1 October 2024 by Suhardi, V. J., Oktarina, A., et al.

The cellular and molecular mediators of peri-implant fibrosis-a most common reason for implant failure and for surgical revision after the replacement of a prosthetic joint-remain unclear. Here we show that peri-implant fibrotic tissue in mice and humans is largely composed of a specific population of skeletal cells expressing the leptin receptor (LEPR) and that these cells are necessary and sufficient to generate and maintain peri-implant fibrotic tissue. In a mouse model of tibial implantation and osseointegration that mimics partial knee arthroplasty, genetic ablation of LEPR+ cells prevented peri-implant fibrosis and the implantation of LEPR+ cells from peri-implant fibrotic tissue was sufficient to induce fibrosis in secondary hosts. Conditional deletion of the adhesion G-protein-coupled receptor F5 (ADGRF5) in LEPR+ cells attenuated peri-implant fibrosis while augmenting peri-implant bone formation, and ADGRF5 inhibition by the intra-articular or systemic administration of neutralizing anti-ADGRF5 in the mice prevented and reversed peri-implant fibrosis. Pharmaceutical agents that inhibit the ADGRF5 pathway in LEPR+ cells may be used to prevent and treat peri-implant fibrosis.
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

  • Endocrinology and Physiology

Fibroblast diversification is an embryonic process dependent on muscle contraction

Preprint on BioRxiv : the Preprint Server for Biology on 18 March 2024 by Coren, L., Zaffryar-Eilot, S., et al.

SUMMARY Fibroblasts are the most common cell type found in connective tissues, known to play major roles in development, homeostasis, regeneration and disease. Although specific fibroblast subpopulations were associated with different biological processes, the mechanisms and unique activities underlying their diversity has not been thoroughly examined. Turning to skeletal muscle development, we set to dissect the variation of muscle-resident fibroblasts (mrFibroblasts). Our results demonstrate mrFibroblasts diversify following the transition from embryonic to fetal myogenesis prior to birth. We find mrFibroblast segregate into two major subpopulations occupying distinct niches, with interstitial fibroblasts residing between the muscle fibers, and delineating fibroblasts sheathing the muscle mass. We further show these subpopulations entail distinct cellular dynamics and transcriptomes. Notably, we find mrFibroblast subpopulations exert distinct regulatory roles on myoblast proliferation and differentiation. Finally, we demonstrate this diversification depends on muscle contraction. Altogether, these findings establish mrFibroblast diversify in a spatio-temporal embryonic process into distinct cell types, entailing different characteristics and roles.

  • FC/FACS
  • Mus musculus (House mouse)
  • Stem Cells and Developmental Biology

The periosteum is critical for bone healing. Studies have shown that the periosteum contains periosteal stem cells (PSCs) with multidirectional differentiation potential and self-renewal ability. PSCs are activated in early fracture healing and are committed to the chondrocyte lineage, which is the basis of callus formation. However, the mechanism by which PSCs are activated and committed to chondrocytes in bone regeneration remains unclear. Here, we show that tartrate acid phosphatase (TRAP)-positive monocytes secrete CTGF to activate PSCs during bone regeneration. The loss function of TRAP-positive monocytes identifies their specific role during bone healing. Then, the secreted CTGF promotes endochondral ossification and activates PSCs in mouse bone fracture models. The secreted CTGF enhances PSC renewal by upregulating the expression of multiple pluripotent genes. CTGF upregulates c-Jun expression through αVβ5 integrin. Then, c-Jun transcription activates the transcription of the pluripotent genes Sox2, Oct4, and Nanog. Simultaneously, CTGF also activates the transcription and phosphorylation of Smad3 through αVβ5 integrin, which is the central gene in chondrogenesis. Our study indicates that TRAP-positive monocyte-derived CTGF promotes bone healing by activating PSCs and directing lineage commitment and that targeting PSCs may be an effective strategy for preventing bone non-union.
Copyright © 2021 Bai, Yu, Deng, Yang, Tan, Dai, Zhang, Dong and Xu.

  • FC/FACS
  • Mus musculus (House mouse)
  • Stem Cells and Developmental Biology
View this product on CiteAb