Product Citations: 20

A 3D tumor spheroid model with robust T cell infiltration for evaluating immune cell engagers.

In IScience on 15 August 2025 by Lo, H. C., Choi, H., et al.

A strong interest in drugs targeting the tumor microenvironment (TME) necessitates new experimental systems that incorporate key TME components. Compared to traditional 2D cell lines, 3D ex vivo spheroids from patient-derived xenograft (PDX) materials may better capture patient tumor characteristics. We developed and validated a 3D tumor spheroid model from non-small cell lung cancer (NSCLC) PDXs to enable T cell infiltration. Histologic and transcriptomic analysis suggested that tumor spheroids closely recapitulate the source PDX tumor tissues. Consistent T cell infiltration into tumor spheroids was achieved using a well-established magnetic nanoparticle technology, which maintained T cell function and tumor-killing activity. Drug treatment studies with immunotherapy agents also demonstrated the potential scalability of 3D tumor-T cell spheroids in assessing drug activity, including tumor viability and cytokine secretion. This platform provides a useful tool for evaluating drug candidates that can be translated to patient tumor responses related to both tumor intrinsic and TME factors.
© 2025 The Author(s).

  • Cancer Research
  • Immunology and Microbiology

A multi-kinase inhibitor screen identifies inhibitors preserving stem-cell-like chimeric antigen receptor T cells.

In Nature Immunology on 1 February 2025 by Song, F., Tsahouridis, O., et al.

Chimeric antigen receptor T cells (CAR T cells) with T stem (TSCM) cell-like phenotypic characteristics promote sustained antitumor effects. We performed an unbiased and automated high-throughput screen of a kinase-focused compound set to identify kinase inhibitors (KIs) that preserve human TSCM cell-like CAR T cells. We identified three KIs, UNC10225387B, UNC10225263A and UNC10112761A, that combined in vitro increased the frequency of CD45RA+CCR7+TCF1hi TSCM cell-like CAR T cells from both healthy donors and patients with cancer. KI-treated CAR T cells showed enhanced antitumor effects both in vitro and in vivo in mouse tumor models. The KI cocktail maintains TSCM cell-like phenotype preferentially in CAR T cells originating from naive T cells and causes transcriptomic changes without arresting T cell activation or modulating the chromatin organization. Specific kinases, ITK, ADCK3, MAP3K4 and CDK13, targeted by the KI cocktail in a dose-dependent manner are directly associated with the preservation of TSCM cell-like CAR T cells. Knockdown of these kinases individually or in combination enriches for TSCM cell-like CAR T cells, but only CAR T cells generated in the presence of the KI cocktail show robust expansion and differentiation on stimulation with tumor cells. Overall, transient pharmacological inhibition of strategically targeted kinases maintains stem-like features in CAR T cells and improves their antitumor activity.
© 2025. The Author(s).

  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

The Bari-SolidAct randomized controlled trial compared baricitinib with placebo in patients with severe COVID-19. A post hoc analysis revealed a higher incidence of serious adverse events (SAEs) among SARS-CoV-2-vaccinated participants who had received baricitinib. This sub-study aimed to investigate whether vaccination influences the safety profile of baricitinib in patients with severe COVID-19.
Biobanked samples from 146 participants (55 vaccinated vs. 91 unvaccinated) were analysed longitudinally for inflammation markers, humoral responses, tissue viral loads, and plasma viral antigens on days 1, 3, and 8. High-dimensional analyses, including RNA sequencing and flow cytometry, were performed on available samples. Mediation analyses were used to assess relationships between SAEs, baseline-adjusted biomarkers, and treatment-vaccination status.
Vaccinated participants were older, more frequently hospitalized, had more comorbidities, and exhibited higher nasopharyngeal viral loads. Baricitinib treatment did not affect antibody responses or viral clearance, but reduced markers of T-cell and monocyte activation compared to placebo (sCD25, sCD14, sCD163, sTIM-3). Age, baseline levels of plasma viral antigen, and several inflammatory markers, as well as IL-2, IL-6, Neopterin, CXCL16, sCD14, and suPAR on day 8 were associated with the occurrence of SAEs. However, mediation analyses of markers linked to SAEs, baricitinib treatment, or vaccination status did not reveal statistically significant interactions between vaccination status and SAEs.
This sub-study did not identify any virus- or host-related biomarkers significantly associated with the interaction between SARS-CoV-2 vaccination status and the safety of baricitinib. However, caution should be exercised due to the moderate sample size.
EU Horizon 2020 (grant number 101015736).
Copyright © 2024. Published by Elsevier B.V.

  • FC/FACS
  • COVID-19

Genetic retargeting of E3 ligases to enhance CAR T cell therapy.

In Cell Chemical Biology on 15 February 2024 by Lane, I. C., Kembuan, G., et al.

Chimeric antigen receptor (CAR) T cell therapies are medical breakthroughs in cancer treatment. However, treatment failure is often caused by CAR T cell dysfunction. Additional approaches are needed to overcome inhibitory signals that limit anti-tumor potency. Here, we developed bifunctional fusion "degrader" proteins that bridge one or more target proteins and an E3 ligase complex to enforce target ubiquitination and degradation. Conditional degradation strategies were developed using inducible degrader transgene expression or small molecule-dependent E3 recruitment. We further engineered degraders to block SMAD-dependent TGFβ signaling using a domain from the SARA protein to target both SMAD2 and SMAD3. SMAD degrader CAR T cells were less susceptible to suppression by TGFβ and demonstrated enhanced anti-tumor potency in vivo. These results demonstrate a clinically suitable synthetic biology platform to reprogram E3 ligase target specificity for conditional, multi-specific endogenous protein degradation, with promising applications including enhancing the potency of CAR T cell therapy.
Copyright © 2023 Elsevier Ltd. All rights reserved.

  • Genetics
  • Immunology and Microbiology

New York esophageal squamous cell carcinoma-1 (NY-ESO-1)-specific T cell receptor (TCR) T cell therapy is effective in tumors with NY-ESO-1 expression, but a safe and effective TCR-T cell therapeutic protocol remains to be improved. Here, we report a phase 1 investigational new drug clinical trial with TCR affinity-enhanced specific T cell therapy (TAEST16001) for targeting NY-ESO-1. Enrolled patients receive TAEST16001 cell infusion after dose-reduced lymphodepletion with cyclophosphamide (15 mg/kg/day × 3 days) combined with fludarabine (20 mg/m2/day × 3 days), and the TCR-T cells are maintained with low doses of interleukin-2 injection post-adoptive transfer. Analysis of 12 patients treated with the regimen demonstrates no treatment-related serious adverse events. The overall response rate is 41.7%. The median progression-free survival is 7.2 months, and the median duration of response is 13.1 months. The protocol of TAEST16001 cells delivers a safe and highly effective treatment for patients with advanced soft tissue sarcoma (ClinicalTrials.gov: NCT04318964).
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Homo sapiens (Human)
  • Immunology and Microbiology
View this product on CiteAb