Chimeric antigen receptor (CAR) T cell therapy for solid tumours is challenging because of the immunosuppressive tumour microenvironment and a complex manufacturing process. Cellular manufacturing protocols directly impact CAR T cell yield, phenotype and metabolism, which correlates with in vivo potency and persistence. Although metabolic fitness is a critical quality attribute, how T cell metabolic requirements vary throughout the manufacturing process remains unexplored. Here we use optical metabolic imaging (OMI), a non-invasive, label-free method to evaluate single-cell metabolism. Using OMI, we identified the impacts of media composition on CAR T cell metabolism, activation strength and kinetics, and phenotype. We demonstrate that OMI parameters can indicate cell cycle stage and optimal gene transfer conditions for both viral transduction and electroporation-based CRISPR/Cas9. In a CRISPR-edited anti-GD2 CAR T cell model, OMI measurements allow accurate prediction of an oxidative metabolic phenotype that yields higher in vivo potency against neuroblastoma. Our data support OMI as a robust, sensitive analytical tool to optimize manufacturing conditions and monitor cell metabolism for increased CAR T cell yield and metabolic fitness.
© 2025. The Author(s), under exclusive licence to Springer Nature Limited.