Product Citations: 29

1 image found

Duchenne muscular dystrophy (DMD) is caused by the absence of the full form of the dystrophin protein, which is essential for maintaining the structural integrity of muscle cells, including those in the heart and respiratory system. Despite progress in understanding the molecular mechanisms associated with DMD, myocardial insufficiency persists as the primary cause of mortality, and existing therapeutic strategies remain limited. This study investigates the hypothesis that a dysregulation of the biological communication between infiltrating macrophages (MPs) and neurocardiac junctions exists in dystrophic cardiac tissue. In a mouse model of DMD (mdx), this phenomenon is influenced by the over-release of chondroitin sulfate proteoglycan-4 (CSPG4), a key inhibitor of nerve sprouting and a modulator of the neural function, by MPs infiltrating the cardiac tissue and associated with dilated cardiomyopathy, a hallmark of DMD. Givinostat, the histone deacetylase inhibitor under current development as a clinical treatment for DMD, is effective at both restoring a physiological microenvironment at the neuro-cardiac junction and cardiac function in mdx mice in addition to a reduction in cardiac fibrosis, MP-mediated inflammation, and tissue CSPG4 content. This study provides novel insight into the pathophysiology of DMD in the heart, identifying potential new biological targets. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
© 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

  • Mus musculus (House mouse)
  • Cardiovascular biology
  • Pathology

Remote Ischemic Post-Conditioning (RIC) Mediates Anti-Inflammatory Signaling via Myeloid AMPKα1 in Murine Traumatic Optic Neuropathy (TON).

In International Journal of Molecular Sciences on 19 December 2024 by Akhter, N., Contreras, J., et al.

Traumatic optic neuropathy (TON) has been regarded a vision-threatening condition caused by either ocular or blunt/penetrating head trauma, which is characterized by direct or indirect TON. Injury happens during sports, vehicle accidents and mainly in military war and combat exposure. Earlier, we have demonstrated that remote ischemic post-conditioning (RIC) therapy is protective in TON, and here we report that AMPKα1 activation is crucial. AMPKα1 is the catalytic subunit of the heterotrimeric enzyme AMPK, the master regulator of cellular energetics and metabolism. The α1 isoform predominates in immune cells including macrophages (Mφs). Myeloid-specific AMPKα1 KO mice were generated by crossing AMPKα1Flox/Flox and LysMcre to carry out the study. We induced TON in mice by using a controlled impact system. Mice (mixed sex) were randomized in six experimental groups for Sham (mock); Sham (RIC); AMPKα1F/F (TON); AMPKα1F/F (TON+RIC); AMPKα1F/F LysMCre (TON); AMPKα1F/F LysMCre (TON+RIC). RIC therapy was given every day (5-7 days following TON). Data were generated by using Western blotting (pAMPKα1, ICAM1, Brn3 and GAP43), immunofluorescence (pAMPKα1, cd11b, TMEM119 and ICAM1), flow cytometry (CD11b, F4/80, CD68, CD206, IL-10 and LY6G), ELISA (TNF-α and IL-10) and transmission electron microscopy (TEM, for demyelination and axonal degeneration), and retinal oxygenation was measured by a Unisense sensor system. First, we observed retinal morphology with funduscopic images and found TON has vascular inflammation. H&E staining data suggested that TON increased retinal inflammation and RIC attenuates retinal ganglion cell death. Immunofluorescence and Western blot data showed increased microglial activation and decreased retinal ganglion cell (RGCs) marker Brn3 and axonal regeneration marker GAP43 expression in the TON [AMPKα1F/F] vs. Sham group, but TON+RIC [AMPKα1F/F] attenuated the expression level of these markers. Interestingly, higher microglia activation was observed in the myeloid AMPKα1F/F KO group following TON, and RIC therapy did not attenuate microglial expression. Flow cytometry, ELISA and retinal tissue oxygen data revealed that RIC therapy significantly reduced the pro-inflammatory signaling markers, increased anti-inflammatory macrophage polarization and improved oxygen level in the TON+RIC [AMPKα1F/F] group; however, RIC therapy did not reduce inflammatory signaling activation in the myeloid AMPKα1 KO mice. The transmission electron microscopy (TEM) data of the optic nerve showed increased demyelination and axonal degeneration in the TON [AMPKα1F/F] group, and RIC improved the myelination process in TON [AMPKα1F/F], but RIC had no significant effect in the AMPKα1 KO mice. The myeloid AMPKα1c deletion attenuated RIC induced anti-inflammatory macrophage polarization, and that suggests a molecular link between RIC and immune activation. Overall, these data suggest that RIC therapy provided protection against inflammation and neurodegeneration via myeloid AMPKα1 activation, but the deletion of myeloid AMPKα1 is not protective in TON. Further investigation of RIC and AMPKα1 signaling is warranted in TON.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Homeostatic Macrophages Prevent Preterm Birth and Improve Neonatal Outcomes by Mitigating In Utero Sterile Inflammation in Mice.

In The Journal of Immunology on 1 December 2024 by Garcia-Flores, V., Liu, Z., et al.

Preterm birth (PTB), often preceded by preterm labor, is a major cause of neonatal morbidity and mortality worldwide. Most PTB cases involve intra-amniotic inflammation without detectable microorganisms, termed in utero sterile inflammation, for which there is no established treatment. In this study, we propose homeostatic macrophages to prevent PTB and adverse neonatal outcomes caused by in utero sterile inflammation. Single-cell atlases of the maternal-fetal interface revealed that homeostatic maternal macrophages are reduced with human labor. M2 macrophage treatment prevented PTB and reduced adverse neonatal outcomes in mice with in utero sterile inflammation. Specifically, M2 macrophages halted premature labor by suppressing inflammatory responses in the amniotic cavity, including inflammasome activation, and mitigated placental and offspring lung inflammation. Moreover, M2 macrophages boosted gut inflammation in neonates and improved their ability to fight systemic bacterial infections. Our findings show that M2 macrophages are a promising strategy to mitigate PTB and improve neonatal outcomes resulting from in utero sterile inflammation.
Copyright © 2024 by The American Association of Immunologists, Inc.

  • Immunology and Microbiology

Semaphorin-plexin signaling plays a major role in the tumor microenvironment (TME). In particular, Semaphorin 4D (SEMA4D) has been shown to promote tumor growth and metastasis; however, the role of its high-affinity receptor Plexin-B1 (PLXNB1), which is expressed in the TME, is poorly understood. In this study, we directly targeted PLXNB1 in the TME of triple-negative murine breast carcinoma to elucidate its relevance in cancer progression. We found that primary tumor growth and metastatic dissemination were strongly reduced in PLXNB1-deficient mice, which showed longer survival. PLXNB1 loss in the TME induced a switch in the polarization of tumor-associated macrophages (TAM) toward a pro-inflammatory M1 phenotype and enhanced the infiltration of CD8+ T lymphocytes both in primary tumors and in distant metastases. Moreover, PLXNB1 deficiency promoted a shift in the Th1/Th2 balance of the T-cell population and an antitumor gene signature, with the upregulation of Icos, Perforin-1, Stat3, and Ccl5 in tumor-infiltrating lymphocytes (TILs). We thus tested the translational relevance of TME reprogramming driven by PLXNB1 inactivation for responsiveness to immunotherapy. Indeed, in the absence of PLXNB1, the efficacy of anti-PD-1 blockade was strongly enhanced, efficiently reducing tumor growth and distant metastasis. Consistent with this, pharmacological PLXNB1 blockade by systemic treatment with a specific inhibitor significantly hampered breast cancer growth and enhanced the antitumor activity of the anti-PD-1 treatment in a preclinical model. Altogether, these data indicate that PLXNB1 signaling controls the antitumor immune response in the TME and highlight this receptor as a promising immune therapeutic target for metastatic breast cancers.
©2024 The Authors; Published by the American Association for Cancer Research.

  • Cancer Research
  • Immunology and Microbiology

Researchers who aim to globally analyze the gastrointestinal immune system via flow cytometry have many protocol options to choose from, with specifics generally tied to gut wall layers of interest. To get a clearer idea of the approach we should use on full-thickness colon samples from mice, we first undertook a systematic comparison of three tissue dissociation techniques: two based on enzymatic cocktails and the other one based on manual crushing. Using flow cytometry panels of general markers of lymphoid and myeloid cells, we found that the presence of cell-surface markers and relative cell population frequencies were more stable with the mechanical method. Both enzymatic approaches were associated with a marked decrease of several cell-surface markers. Using mechanical dissociation, we then developed two minimally overlapping panels, consisting of a total of 26 antibodies, for serial profiling of lymphoid and myeloid lineages from the mouse colon in greater detail. Here, we highlight how we accurately delineate these populations by manual gating, as well as the reproducibility of our panels on mouse spleen and whole blood. As a proof-of-principle of the usefulness of our general approach, we also report segment- and life stage-specific patterns of immune cell profiles in the colon. Overall, our data indicate that mechanical dissociation is more suitable and efficient than enzymatic methods for recovering immune cells from all colon layers at once. Additionally, our panels will provide researchers with a relatively simple tool for detailed immune cell profiling in the murine gastrointestinal tract, regardless of life stage or experimental conditions.
© 2024. The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb