Product Citations: 12

A genome-wide CRISPR screen identifies BRD4 as a regulator of cardiomyocyte differentiation.

In Nat Cardiovasc Res on 1 March 2024 by Padmanabhan, A., de Soysa, T. Y., et al.

Human induced pluripotent stem cell (hiPSC) to cardiomyocyte (CM) differentiation has reshaped approaches to studying cardiac development and disease. In this study, we employed a genome-wide CRISPR screen in a hiPSC to CM differentiation system and reveal here that BRD4, a member of the bromodomain and extraterminal (BET) family, regulates CM differentiation. Chemical inhibition of BET proteins in mouse embryonic stem cell (mESC)-derived or hiPSC-derived cardiac progenitor cells (CPCs) results in decreased CM differentiation and persistence of cells expressing progenitor markers. In vivo, BRD4 deletion in second heart field (SHF) CPCs results in embryonic or early postnatal lethality, with mutants demonstrating myocardial hypoplasia and an increase in CPCs. Single-cell transcriptomics identified a subpopulation of SHF CPCs that is sensitive to BRD4 loss and associated with attenuated CM lineage-specific gene programs. These results highlight a previously unrecognized role for BRD4 in CM fate determination during development and a heterogenous requirement for BRD4 among SHF CPCs.
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Ghrelin mediated cardioprotection using in vitro models of oxidative stress.

In Gene Therapy on 1 March 2024 by Kok, C., Ghossein, G., et al.

Ghrelin is commonly known as the 'hunger hormone' due to its role in stimulating food intake in humans. However, the roles of ghrelin extend beyond regulating hunger. Our aim was to investigate the ability of ghrelin to protect against hydrogen peroxide (H2O2), a reactive oxygen species commonly associated with cardiac injury. An in vitro model of oxidative stress was developed using H2O2 injured H9c2 cells. Despite lentiviral ghrelin overexpression, H9c2 cell viability and mitochondrial function were not protected following H2O2 injury. We found that H9c2 cells lack expression of the preproghrelin cleavage enzyme prohormone convertase 1 (encoded by PCSK1), required to convert ghrelin to its active form. In contrast, we found that primary rat cardiomyocytes do express PCSK1 and were protected from H2O2 injury by lentiviral ghrelin overexpression. In conclusion, we have shown that ghrelin expression can protect primary rat cardiomyocytes against H2O2, though this effect was not observed in other cell types tested.
© 2024. Crown.

  • Endocrinology and Physiology
  • Genetics

Development of new adeno-associated virus capsid variants for targeted gene delivery to human cardiomyocytes.

In Molecular Therapy. Methods Clinical Development on 14 September 2023 by Kok, C. Y., Tsurusaki, S., et al.

Recombinant adeno-associated viruses (rAAVs) have emerged as one of the most promising gene therapy vectors that have been successfully used in pre-clinical models of heart disease. However, this has not translated well to humans due to species differences in rAAV transduction efficiency. As a result, the search for human cardiotropic capsids is a major contemporary challenge. We used a capsid-shuffled rAAV library to perform directed evolution in human iPSC-derived cardiomyocytes (hiPSC-CMs). Five candidates emerged, with four presenting high sequence identity to AAV6, while a fifth divergent variant was related to AAV3b. Functional analysis of the variants was performed in vitro using hiPSC-CMs, cardiac organoids, human cardiac slices, non-human primate and porcine cardiac slices, as well as mouse heart and liver in vivo. We showed that cell entry was not the best predictor of transgene expression efficiency. The novel variant rAAV.KK04 was the best-performing vector in human-based screening platforms, exceeding the benchmark rAAV6. None of the novel capsids demonstrate a significant transduction of liver in vivo. The range of experimental models used revealed the value of testing for tropism differences under the conditions of human specificity, bona fide, myocardium and cell type of interest.
© 2023 The Author(s).

  • FC/FACS
  • Immunology and Microbiology

ETV2 primes hematoendothelial gene enhancers prior to hematoendothelial fate commitment.

In Cell Reports on 27 June 2023 by Steimle, J. D., Kim, C., et al.

Mechanisms underlying distinct specification, commitment, and differentiation phases of cell fate determination remain undefined due to difficulties capturing these processes. Here, we interrogate the activity of ETV2, a transcription factor necessary and sufficient for hematoendothelial differentiation, within isolated fate intermediates. We observe transcriptional upregulation of Etv2 and opening of ETV2-binding sites, indicating new ETV2 binding, in a common cardiac-hematoendothelial progenitor population. Accessible ETV2-binding sites are active at the Etv2 locus but not at other hematoendothelial regulator genes. Hematoendothelial commitment coincides with the activation of a small repertoire of previously accessible ETV2-binding sites at hematoendothelial regulators. Hematoendothelial differentiation accompanies activation of a large repertoire of new ETV2-binding sites and upregulation of hematopoietic and endothelial gene regulatory networks. This work distinguishes specification, commitment, and sublineage differentiation phases of ETV2-dependent transcription and suggests that the shift from ETV2 binding to ETV2-bound enhancer activation, not ETV2 binding to target enhancers, drives hematoendothelial fate commitment.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

  • FC/FACS

Merits of hiPSC-Derived Cardiomyocytes for In Vitro Research and Testing Drug Toxicity.

In Biomedicines on 31 October 2022 by Wang, P. H., Fang, Y. H., et al.

The progress of medical technology and scientific advances in the field of anticancer treatment have increased the survival probabilities and duration of life of patients. However, cancer-therapy-induced cardiac dysfunction remains a clinically salient problem. Effective anticancer therapies may eventually induce cardiomyopathy. To date, several studies have focused on the mechanisms underlying cancer-treatment-related cardiotoxicity. Cardiomyocyte cell lines with no contractile physiological characteristics cannot adequately model "true" human cardiomyocytes. However, applying "true" human cardiomyocytes for research is fraught with many obstacles (e.g., invasiveness of the procedure), and there is a proliferative limitation for rodent primary cultures. Human-induced pluripotent stem-cell-differentiated cardiomyocytes (hiPSC-CMs), which can be produced efficiently, are viable candidates for mimicking human cardiomyocytes in vitro. We successfully performed cardiac differentiation of human iPSCs to obtain hiPSC-CMs. These hiPSC-CMs can be used to investigate the pathophysiological basis and molecular mechanism of cancer-treatment-related cardiotoxicity and to develop novel strategies to prevent and rescue such cardiotoxicity. We propose that hiPSC-CMs can be used as an in vitro drug screening platform to study targeted cancer-therapy-related cardiotoxicity.

  • FC/FACS
View this product on CiteAb